Dependable Distributed Systems

Anti-Honeypot Technology

Thorsten Holz

Laboratory for Dependable Distributed Systems

holz@i4d4.informatik.rwth-aachen.de

%%/ RWTH

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #1

http://www.mmweg.rwth-aachen.de/~thorsten.holz
holz@i4.informatik.rwth-aachen.de

Overview

1. Brief introduction to honeypot technology

2. NoOSEBrEakK

e Workings of Sebek

oo e Detecting & disabling Sebek
o Kebes

e Other anti-Sebek techniques

3. Detecting other honeypot architectures
e VMware-based honeypots

e UML-based honeypots
e Others

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #2

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Who we are

= Laboratory for Dependable Distributed
crEmmm— Systems at RWTH Aachen University

Honeypot Technology

= Main interests:
ecures e Theoretical considerations of security (safety
e / liveness / information flow properties,

theoretical models of secure systems)

e Threats in communication networks
(honeypots,...)
e Trusted Computing
= Summer School “Applied IT-security”
= “Hacker lab” & “Hacker seminar”

http://www-1i4.informatik.rwth-aachen.de/lufg

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #3

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Honeypot Technology

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #4

http://www.mmweg.rwth-aachen.de/~thorsten.holz

"Suppose,” he [Winnie the Pooh] said to Piglet, "you wanted

® Overview to catch me, how would you do it?"

"Well," said Piglet, "l should do it like this: | should make a
o trap, and | should put a jar of honey in the trap, and you would
Architectures smell it, and you would go in after it,and ..."

Conclusion

A. A. Milne: Winnie the Pooh

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #5

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Honeypots?

= Electronic bait, i.e. network resources (e.g.
computers, routers, switches, ...) deployed to

@ Overview

:

be probed, attacked and compromised

= m “Learn the tools, tactics, and motives of the

e blackhat community and share these lessons
learned”

= Monitoring software permanently collects data,
helps in post-incident forensics

= Clifford Stoll: The Cuckoo’s Egg, 1988

= Honeynet Project: Non-profit research
organization of security professionals
dedicated to information security

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #6

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.amazon.de/exec/obidos/ASIN/0743411463/mywe-21/
http://www.honeynet.org/

Global Honeynet Project

@ Overview

The Honeynet_

womme 8 DEVelopment of tools, for example monitoring
software like Sebek or software for data

analysis

= Experiences up to now:
e Capturing of exploits and tools, e.g. exploit
for known vulnerability (dtspcd, 2002)

e Typical approach of attackers

¢ Monitoring of conversations over IRC
Botnets, organized card fraud, ...
Further information: honeynet.org

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #7

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.honeynet.org/

Building Blocks: sebek

= Kernel-module on Linux & Solaris, patch on

OpenBSD / NetBSD, device driver for Window$
= Tries to capture all activities of an attacker

Detecting Other Honeypot
Architectures

» Hijacks sys_read (access to SSH sessions,
burneye-protected programs, ...)

= Direct communication to ethernet driver,
therefore mostly stealth

= Unlinking from module list to hide its presence

Conclusion

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #8

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

Detecting Other Honeypot
Architectures

Conclusion

Building Blocks: Honeywall

= Transparent bridge, used for data capture and
data control

m IDS snort /IPS snort_inline (now part of
snort)

alert ip $HONEYNET any -> $EXTERNAL_NET any
(msg:"SHELLCODE x86 stealth NOOP"; rev:6; sid:651;
content:"|EB 02 EB 02 EB 02|";
replace:" |24 00 99 DE 6C 3E|";)

mnetfilter/iptables for traffic limiting

= Further monitoring
e monlit OF supervise

e swatch

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #9

http://www.mmweg.rwth-aachen.de/~thorsten.holz

honeywall
® Overview T — \@ ‘
Honeypot Technology = /U I |
p ;

i)}
NoSEBrEaK (RWTH MAN 3 Managment

A

(

Detecting Other Honeypot ~_

Architectures
Conclusion é’

SuSE 7.3 SuSE 6.2 !

FreeBSD
4.4

Solaris
2.6

changing
OSes

one

VMware host

Official website

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #10

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www-i4.informatik.rwth-aachen.de/lufg/honeynet

NoSEBrEakK

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #11

http://www.mmweg.rwth-aachen.de/~thorsten.holz

NoSEBrEakK

s We had no attacks on our honeynet, so ...
e m ToOIKit written in Python 2.3 to detect and

remove Sebek from honeypot

= Work together with Maximillian Dornseif and
o Christian N. Klein

i = Presented as academic paper at 5th IEEE

Information Assurance Workshop, Westpoint
Available at arXiv as ¢s.CR/0406052

= Get the source code at md.hudora.de
= Now: Short presentation of our results

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #12

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://uk.arxiv.org/abs/cs.CR/0406052
http://md.hudora.de/publications/#nosebreak

@ Overview

Honeypot Technology

NoSEBrEaK

@ Detection

® Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Sebek

[...] monitoring capability to all activity on the
honeypot including, but not limited to, keystrokes.
If a file is copied to the honeypot, Sebek will see
and record the file, producing an identical copy. If
the intruder fires up an IRC or mail client, Sebek
will see those messages. [...] Sebek also provides
the ability to monitor the internal workings of the
honeypot in a glass-box manner, as compared to the
previous black-box techniques. [...] intruders can
detect and disable Sebek. Fortunately, by the time
Sebek has been disabled, the code associated with the
technique and a record of the disabling action has
been sent to the collection server.

Know Your Enemy: Sebek

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #13

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.honeynet.org/papers/sebek.pdf

@ Overview

Honeypot Technology

NoSEBrEaK

@ Detection

® Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Workings of Sebek in short

Concentrate on Sebek version 2.1.7 for Linux,
techniques are applicable for other Sebek
versions

Basic mechanism of Sebek and interesting
points for attack:

m Hijack sys_read()
= Send data passing through sys read() in
covert manner over the network

= Overwrites part of the network stack
(packet_recvmsg) to hide Sebek data passing
on to the network

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #14

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Hiding of Sebek

m Sebek loads as a kernel module
s Afterwards cleaner.o (part of adore) is

loaded which removes Sebek from modules list
:g:::rsTechniOIues From cle aner.o

Detecting Other Honeypot ' f
Architectures 1

(__this module.next)

Conclusion __this_module.next = _ this_module.next->next;

This works because kernel maintains list of
modules (sys_create_module())

spin lock irgsave (&modlist lock, flags);
mod->next = module list;
module list = mod; /* link it in */

spin_unlock i1rgrestore(&modlist_lock, flags);

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #15

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://lxr.linux.no/source/kernel/module.c?v=2.4.26#L292

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Detecting Sebek

Several ways to detect Sebek come to mind:
= Latency

= Network traffic counters

= Modification of sys-call table
= Finding hidden module

= Other cruft in memory

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #16

http://www.mmweg.rwth-aachen.de/~thorsten.holz

254 Setup

Setup in movies:
= Attacker compromised one of the honeypots

» SSH-connection from attacker to honeypot

@ Introduction

(~ 1 KB/s data)
s Movies show view of an attacker

@ Overview

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Attacker Honeywal Honeypot

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #17

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Latency

First detection method we found during tests:

@ Overview

Honeypot Technology 11 d d_ a tt a c k b

NoSEBrEaK
@ Introduction
= = =
Py p— $ dd if=/dev/zero of=/dev/null bs=1
® Kebes

@ Other Techniques

Just call sys_read () a couple of thousand
times per second...

Detecting Other Honeypot
Architectures

Conclusion

Movie: dd.mov

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #18

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Network Traffic Counters

= dd-attack / backward running counters
e Issue solved in Sebek 2.1.7, changed packet

@ Overview

Honeypot Technology

counter manipulation technique (take a look
at sprintf stats)

ot g dev->get_stats->tx_bytes Or
dev->get_stats->tx packets

Conclusion vs]

/proc/net/dev or ifconfig output

Movie: devchecker .mov

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #19

http://www.mmweg.rwth-aachen.de/~thorsten.holz

o 4% 4 GB traffic in 4 minutes?

@ Overview
Honeypot Technology

NoSEBrEaK
@ Introduction

@ Detection

@ Avoid Logging
® Kebes
@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

RedTeam@RWTH

vampire:~/NoSEBrEak/kebes# 1fconfig ethd
ethd Link encap:Ethernet HWaddr @8:82:3F:74:5E:3D
inet addr:16.11.12.72 Becast:18.255.255.255 Mask:255.8.6.0
UP BEOADCAST RUNNING MULTICAST MTU:15688 Metric:l
KX packets:254 errors:@ dropped:@ overruns:@ frame:@
TX packets: 4294967295 errors:@ dropped:@ overruns:d@ carrier:@
collisions:@ txqueuelen:l&6E
EX bytes:25868 (25.2 KiB) TX bytes:4204906268 (2.9 GiB)
Interrupt:18 Bose address:BxSH6E

vampire:~/NoSEBrEak/kebes# uptime
21:16:26 up 4 min, £ users, load average: &.82, 8.87, &.63
vampire:~/NoSEBrEak/kebes# §

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #20

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Excursus: System Calls

= User-land vs. kernel-land:
e Upon read () in usermode, push parameter

@ Overview

Honeypot Technology

in register, call 0x80

. -

e In kernelmode, search in Interrupt Descriptor
e Table (IDT) for interrupt handler

Architectures

e According to sys-call table, interrupt handler
calls sys read ()

m Defined in
/usr/src/linux/include/asm/unistd.h

#define @ NR exit 1
tdefine @ NR fork 2
tdefine @ NR read 3

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #21

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Excursus: Modifying it

= Sys-call-table stores pointers to function
= Modify these to control behaviour of sys-calls

Kernel Space

sys_open()

sys_call_table[NR_open] | ———

insmod rootkit.o

sys call table] NR open] | ——

hacked sys open()

= Some Linux 2.4 versions export it:
extern int sys call tablell];

Thorsten Holz — Laboratory for Dependable Distributed Systems

21st Chaos Communication Congress - slide #22

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Excursus: Finding it

for (ptr = (unsigned long) &loops_per Jjiffy;

ptr < (unsigned long) &boot_cpu_data; ptr += sizeof (void *)) {

unsigned long *p;

p = (unsigned long *)ptr;

if (p[__NR close] == (unsigned long) sys_close) {
sct = (unsigned long **)p;
break:;
}
}
if (sct) {
(unsigned long *) ord = sct[_NR read];
sct[NR read] = (unsigned long *) hacked read;

}
Should work with recent 2.4.XX and 2.6.X kernels [1]

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #23

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.linuxdevcenter.com/pub/a/linux/2002/12/12/vanishing.html

x Sebek modifies in current version sys read ()
= Modification can easily be detected — just take

@ Overview

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

a look at the memory

= Before loading Sebek:

sys _read = 0xc0l32ecc

Detecting Other Honeypot
Architectures

Conclusion

sys_write = 0xc0132fc8

s Afterwards:

sys _read = 0xc884e748
sys_write = 0xc0132fc8

Thorsten Holz — Laboratory for Dependable Distributed Systems

Modification of Sys-call Table

21st Chaos Communication Congress - slide #24

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Detecting Sebek

Several ways to detect Sebek come to mind:
Honeypot Technology . Latency

m Network traffic counters

= Modification of sys-call table

@ Other Techniques

weamoreioens W FiNAing hidden module

Architectures

a Other cruft in memory

@ Overview

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #25

http://www.mmweg.rwth-aachen.de/~thorsten.holz

/usr/include/linux/module.h |

Interesting things in

/usr/include/linux/module.h Kernel 2.4.X

o inroduston struct module {

unsigned long size of struct; /* == sizeof (module) *
e s Tariqes struct module *next; // Pointer into kernel
arentooren const char *name; // Pointer into kernel

Conclusion

struct module symbol *syms; // Pointer into kernel

struct module ref *deps; // Polnter into kernel
struct module ref *refs; // Pointer into kernel
int (*init) (void) ; // Polnter into module
volid (*cleanup) (void) ; // Polnter into module

}

(Note: Kernel 2.6 has different module.h)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #26

http://www.mmweg.rwth-aachen.de/~thorsten.holz

/usr/include/linux/module.h ll

Variables with only small range of “reasonable”

® Overview v I -
Honeypot Technology a u e s -
NoSEBrEaK
@ Introduction struct mo dU_ 1 e {
, ,
® Avoid Logging unsigned long size;
® Kebes
@ Other Techniques
Detecting Other Honeypot '
Architectures U_n 1 On {
Conclusion atomic_t usecount;
long pad;
} ouc;

unsigned long flags;

unsigned nsyms;
unsigned ndeps;

}

Thorsten Holz — Laboratory for Dependable Distributed Systems

21st Chaos Communication Congress - slide #27

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Finding Modules

= Module header is allocated by kernel’s vmalloc
= Function vmalloc aligns memory to page

oseaiEak boundaries (4096 bytes on I1A32)
= Memory allocated by vimalloc starts at

@ Other Techniques

VMALLOC START and ends VMALLOC RESERVE
bytes later

for (p = VMALLOC_START;
p <= VMALLOC_START + VMALLOC RESERVE - PAGE_SIZE;
p =+ PAGE_SIZE)

phrack issue 0x3d, phile #0x03 —

module hunter.c

Detecting Other Honeypot
Architectures

Conclusion

Movie: module hunter.mov

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #28

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.phrack.org/phrack/61/p61-0x03_Linenoise.txt

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Retrieving Sebek’s Variables

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

Thorsten Holz — Laboratory for Dependable Distributed Systems

= Initial memory layout

21st Chaos Communication Congress - slide #29

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Retrieving Sebek’s Variables

00000000

00000000

PORT

00000000

00000000

00000000

00000000

MAC5

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

MAC2

00000000

MAC1

00000000

00000000

MAGIC

00000000

00000000

00000000

00000000

00000000

00000000

MAC4

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

MACO

00000000

00000000

00000000

00000000

MAC3

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

IP

00000000

(gen_fudge.pl)

Thorsten Holz — Laboratory for Dependable Distributed Systems

= Random positions of parameters

21st Chaos Communication Congress - slide #30

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Retrieving Sebek’s Variables

00000000

00000000

00007a69

00000000

00000000

00000000

00000000

000000d9

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000dc

00000000

0000000d

00000000

00000000

f001cOde

00000000

00000000

00000000

00000000

00000000

00000000

000000e5

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000003a

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

d5495b1d

00000000

= Memory layout after random insertion of
parameters

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #31

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Retrieving Sebek’s Variables

00000000

00000000

00007a69

00000000

00000000

00000000

00000000

000000d9

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000dc

00000000

0000000d

00000000

00000000

f001cOde

00000000

00000000

00000000

00000000

00000000

00000000

000000e5

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000003a

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

d5495b1d

00000000

Thorsten Holz — Laboratory for Dependable Distributed Systems

= Probably not the IP address
= But probably the magic number?

f001cOde = 240.1.192.222 (reserved address
space)

21st Chaos Communication Congress - slide #32

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Retrieving Sebek’s Variables

00000000

00000000

00007a69

00000000

00000000

00000000

00000000

000000d9

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000dc

00000000

0000000d

00000000

00000000

f001cOde

00000000

00000000

00000000

00000000

00000000

00000000

000000e5

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000003a

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

d5495b1d

00000000

Thorsten Holz — Laboratory for Dependable Distributed Systems

d5495b1d = 213.73.91.29

= Probably not the magic humber
= But probably the IP address!

21st Chaos Communication Congress - slide #33

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Thorsten Holz — Laboratory for Dependable Distributed Systems

Retrieving Sebek’s Variables

00000000

00000000

00007a69

00000000

00000000

00000000

00000000

000000d9

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000dc

00000000

0000000d

00000000

00000000

f001cOde

00000000

00000000

00000000

00000000

00000000

00000000

000000e5

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

0000003a

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

d5495b1d

00000000

00007269 = 31337

n Is this perhaps the port number? Or magic?

= And are the other numbers part of the MAC
address?
Movie: NoSEBrEaKer .mov

21st Chaos Communication Congress - slide #34

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Disabling Sebek

= The easy way: Call cleanup ()
kerneljumper.o — jump to arbitrary memory

@ Overview

Honeypot Technology

location and execute code

Sy

» The obvious way: Reconstruct sys_read ()
pointer from the kernel and fix it in sys-call
table

Saved inside memory, so just patch memory

= The crazy way: Patch in your own, untainted
version of sys_read ()
Untested, but should work

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #35

http://www.mmweg.rwth-aachen.de/~thorsten.holz

What can be logged?

= Unconditionally obtained by operator of

R honeypot
e All network traffic (= use encrypted
communication / attack logging host (hard!))

@ Kebes
@ Other Techniques

Detecting Other Honeypot

e All calls to read () (= avoid read ())

= Possibly obtained after break-in
e Forensic data obtained by disk analysis
(= keep most things in memory only)

e Syslog-data (= avoid it as best as possible)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #36

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Intercepting read ()

= What kind of programs use read () ?
e Almost every Iinteractive program uses

@ Overview

Honeypot Technology

read (1)
e Many programs use read () for reading

@ Other Techniques

configuration files etc.

Detecting Other Honeypot
Architectures

e Network programs usually use recv ()
instead of read ()

= Making read () unreliable
e Read in as much data as possible

= dd-attack (not reliable, no control)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #37

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Living without read ()

= Surprisingly it is possible to avoid read () in

R many cases
Lz s Use mmap () Iinstead :-)
e It Is very hard to intercept

e Drawback: It works only on regular files

Architectures

e Things you can not access:
- /dev/random (useful for getting random
seed for crypto stuff)

- pipes (useful for communication)
- All devices

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #38

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction
@ Detection

= Nice bonus: exec () does not call read () (but

@ Kebes
@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Better living without read ()

= Talk directly to network, execute commands
without calling other programs wherever
possible

importing libraries may do so...)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #39

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Other stuff

= Messing with the process nhame — just copy &
Honeypot Technology rename the binary

= Name of the command calling read () is

@ Introduction
@ Detection

logged (max 12 bytes) — we can play with it

= Since filenames are not logged, we can give
impression of reading certain files (makes
forensic harder)

@ Overview

Detecting Other Honeypot
Architectures

Conclusion

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #40

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Kebes

= Proof of concept code

= Entirely written in Python 2.3 for portability
with no external dependency

@ Introduction
@ Detection

e ® Can do everything you can expect from a basic

ecveners Shell

= Highly dynamic, leaves not much traces at
honeypot

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #41

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Detection

@ Avoid Logging

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Kebes : Networking

= Uses TCP-sockets for networking but could
also be adopted to use stdin/stdout or
anything else

= On top of that implements a crypto layer based
on Diffie-Hellman / AES providing compression
and random length padding

= Main problem: Getting entropy for DH
e Use race-conditions and similar things to get
entropy

= Python-specific “Kebes layer” using serialized
objects to transfer commands and results back
and forth

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #42

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Kebes : “Kebes layer”

= Can work asynchronous and send multiple
commands at once

@ Overview

Honeypot Technology

e Asynchronous commands not implemented
poecten by the server at this time

(@Kebes |

» Commands can usually work on several
objects on the server at once

Conclusion

= Highly dynamic: Kebes layer initially knows
only a single command; ADDCOMMAND

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #43

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Kebes : “Kebes layer”

= Code for all additional commands is pushed by
client into server at runtime as serialized

@ Overview

Honeypot Technology

Python objects

= v Lol = S0 most of NoOSEBrEaK-code will only exist in
[@Kebes |] .

the server's RAM — makes forensic harder

Detecting Other Honeypot
Architectures

= Implemented commands: Reading / writing

Conclusion

files, secure deletion, direct execution, listing
directories, ...

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #44

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Securing Sebek for Linux

= Filling memory block with random data and not
zeroing out everything

@ Overview

Honeypot Technology

nosesreak = Disable unloading of Sebek LKM via
A capabilities

e ™ RAte limiting / threshold

= Filter expression to exclude things to log

= Presumably best solution: Kernel patch
(currently in preparation, contact me if you
want to help)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #45

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Anti-Sebek Techniques for Win32

= Similar techniques are also possible for
Window$ version of Sebek:
e Traverse PsLoadedModuleList (similar to
modaule list in Linux)

@ Overview

Honeypot Technology

e Watch out for hooked APIs (similar to
changed memory locations in sys-call table)

e Disable Sebek through restoring of SDT
ServiceTable (similar to reconstruction of
sys-call table in Linux)

= Work by Tan Chew Keong ([1], [2])

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #46

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://www.security.org.sg/vuln/sebek215.html
http://www.security.org.sg/vuln/sebek215-2.html

= NetBSD LKM version of Sebek uses technique

@ Overview

proposed by Silvio Cesare

Honeypot Technology

Anti-Sebek Techniques for *BSD

e Do not modify sys-call table directly

@ Introduction
@ Detection

e Instead, add JuMP (0xE9) at beginning of

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Thorsten Holz — Laboratory for Dependable Distributed Systems

sys call_table[NR open] | ——

code and trojan sys_read In this way

Kernel Space

sys open()

hacked sys open()

ol

21st Chaos Communication Congress - slide #47

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://vx.netlux.org/lib/vsc05.html

@ Overview

Honeypot Technology

NoSEBrEaK

@ Introduction

@ Detection

@ Avoid Logging

® Kebes

@ Other Techniques

Detecting Other Honeypot
Architectures

Conclusion

Anti-Sebek Techniques for *BSD

= NetBSD LKM version of Sebek uses technique
proposed by Silvio Cesare

= Also easy to detect:
unsebek-freebsd-1lkm

= OpenBSD version also detectable via bpf
fingerprinting or searching through kernel file
(disassemble dofileread)

= Article available by Droids Corporation

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #48

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://vx.netlux.org/lib/vsc05.html
http://honeynet.droids-corp.org/download/unsebek-freebsd-lkm.tar.bz2
http://honeynet.droids-corp.org/download/sebek-openbsd.pdf

Detecting Other Honeypot
Architectures

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #49

http://www.mmweg.rwth-aachen.de/~thorsten.holz

@ Overview

Honeypot Technology

NoSEBrEaK

Detecting Other Honeypot
Architectures

@ UML-based Honeypots |
® VMware-based Honeypots
@ Others
@ Further things

Conclusion

UML-based Honeypots

= Easy to identify that you are within UML.:

$ cat /proc/cpuinfo

processor : 0
vendor_id : User Mode Linux
model name : UML
mode : tt
host : Linux vampire 2.4.23 #1 Fri Dec 19 01:
bogomips : 725.81
$ cat /proc/devices $ cat /proc/filesystems
[...] [...]
Block devices: nodev hostfs
[...]
60 cow
98 ubd

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #50

http://www.mmweg.rwth-aachen.de/~thorsten.holz

UML-based Honeypots

= Many other info about UML within /proc
e iomem, ioports, interrupts, ...look

@ Overview

suspicious

Detecting Other Honeypot

ameenee . m |f hostfs Is available, you can have lots of fun

® UML-based Honeypots

® VMware-based Honeypots
@ Others

® Further things # mount - t hOS th /deV/hdal /mnt/

Conclusion

= You can access everything the user running
UML can access

= For example: Retrieve information about
processes

$ find /mnt/proc -name exe |xargs ls -1

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #51

http://www.mmweg.rwth-aachen.de/~thorsten.holz

UML-based Honeypots

$ egrep -i "uml|honey" ksyms

® Overview a02eb408 uml_physmem

Honeypot Technology a O 2 ed 6 8 8 honeypo t

NoSEBrEaK

=emownnens— m /proc filesystem can be faked via hppfs

Architectures
® UML-based Honeypots

meerees - w BUt several other ways to fingerprint UML
@ Further things ex i s t :

Conclusion

e /dev/cow

e Searching through /dev/mem
(Requires CAP_SYS RAWIO capability)

e Info In /var/log/messages

e In tt-mode UML kernel is present in address
space of each of its processes

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #52

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://user-mode-linux.sourceforge.net/hppfs.html

Securing UML

= Use chroot
= Directory (non-writeable) only contains UML

binary and filesystem

Detecting Other Honeypot
Architectures

= Run UML as user “nobody”

® VMware-based Honeypots

@ Others

= UML binary non-writeable and immutable

Conclusion

= Filesystem non-executable
= chown everything to another user

= Use skas-mode (UML kernel runs in an entirely
different host address space from its
processes)

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #53

http://www.mmweg.rwth-aachen.de/~thorsten.holz

VMware-based Honeypots

= Characteristic fingerprints for VMware-based
honeypots:

@ Overview

e MAC address of NIC

Detecting Other Honeypot

o s e e Names of IDE & SCSI devices (HD & CDROM)

® VMware-based Honeypots

@ Others

e PCI vendor string and device ID of video

adapter
e /O backdoor

e dmesg

= Patch by Kostya Kortchinsky from FHP
available

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #54

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://honeynet.rstack.org/tools/vmpatch.c

@ Overview

Honeypot Technology

NoSEBrEaK

Detecting Other Honeypot
Architectures

® UML-based Honeypots

® VMware-based Honeypots

@ Further things

Conclusion

“Red Pill” by Joanna Rutkowska

int swallow redpill () {
unsigned char m[2+4],
rpill[] = "\x0£\x01\x0d\x00\x00\x00\x00\xc3";
* ((unsigned*) &rpill [3]) = (unsigned)m;
((void(*) ()) &rpi1ill) () ;
return (m[5]>0xd0) 2?2 1 : 0;
}

= Get contents of the interrupt descriptor table
register (IDTR)

= SIDT instruction (encoded as OF010D[addTr])

= Can be used in user-mode, but returns
sensitive register

= On VMWare, relocated address of IDT is e.g. at
0xf FXXXXXX

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #55

http://www.mmweg.rwth-aachen.de/~thorsten.holz

Further things

= “Defeating Honeypots: Network Issues”,

o written by Laurent Oudot and me, available at
securityfocus
wewe g “Defeating Honeypots: System Issues”

currently in preparation, should be publised in
®Further things |
January

= PacSec.jp / core04 conference: Laurent Oudot
— “Countering Attack Deception Techniques”

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #56

http://www.mmweg.rwth-aachen.de/~thorsten.holz
http://securityfocus.com/infocus/1803
http://www.pacsec.jp/

Further Questions?

= Thanks for your attention!

s Further information can be found on the links
provided in the slides

- Gre_etings_ to IYIaximiIIian Dornseif, Christian_ N.
Klein, Felix Gartner, Laurent Oudot, the Droids,
Joanna Rutkowska, Lutz Bohne, ...

s Mail: holz@i4d.informatik.rwth-aachen.de

Thorsten Holz — Laboratory for Dependable Distributed Systems 21st Chaos Communication Congress - slide #57

http://www.mmweg.rwth-aachen.de/~thorsten.holz
holz@i4.informatik.rwth-aachen.de

	Honeynets
	Honeypot Technology
	NoSEBrEaK
	Introduction
	Detection
	Avoid Logging
	Kebes
	Other Techniques

	Detecting Other Honeypot Architectures
	UML-based Honeypots
	VMware-based Honeypots
	Others
	Further things

	Conclusion

