
Faculty of Computer Science, Operating Systems Group

Berlin, Dec 2004

The L4 ecosystem

27.12.04 Adam Lackorzynski, Michael Peter Folie 2

System Issues

● Convential systems are
● Complex

● Linux kernel at least 500,000 LoC
● Prone to errors

● Drivers
● All system components run in privileged mode
● Inflexible

● Global policies
● Large Trusted Computing Base (TCB)

27.12.04 Adam Lackorzynski, Michael Peter Folie 3

Insights

Observation:
Most kernel functionality does not need CPU privileges, like:
– Filesystems
– Driver functionality
– User management

27.12.04 Adam Lackorzynski, Michael Peter Folie 4

What is really needed

Jochen Liedtke: “A microkernel does no real work”

 Kernel provides only inevitable mechanisms
 No policies enforced by the kernel

What is inevitable?

 Scheduling

 Safe construction Address Spaces

 Communication Threads

MechanismsAbstractions

 This should be sufficient for everything

27.12.04 Adam Lackorzynski, Michael Peter Folie 5

The Marred Perception of Microkernels

• Supposed to be slow
– Not true any more

• No obvious benefit
– Infamous dispute Torvalds vs. Tannenbaum
– How much worth is manageability of complexity?

• GNU Hurd
– Late
– Slow
– Constantly lagging behind other OS in functionality

27.12.04 Adam Lackorzynski, Michael Peter Folie 6

The Case for Microkernels

• Complexity needs to be handled
– Structure beyond monolithic kernels are needed
– Several candidates

• Virtualisation
• Paravirtualisation
• Microkernel

• Implementation of some functionality is even simplified
– Real time

• DROPS
• RTLinux

– Security
• Substantially smaller trusted computing base

27.12.04 Adam Lackorzynski, Michael Peter Folie 7

Agenda

● Introduction
● Agenda
● L4 µ-kernels
● Legacy support
● Security

27.12.04 Adam Lackorzynski, Michael Peter Folie 8

The Rise and Demise of the First
Microkernel

• First interest in mid-eighties
• Mach

– Started with stripped down UNIX kernels
– High level abstractions

• Asynchronous messages
• Ports
• Virtual memory management

– Adopted by IBM for future OS development
• Disastrous results

– None of the ambitious goals achieved
• The idea seemed to be a failure

• BUT: still alive in MacOS X

27.12.04 Adam Lackorzynski, Michael Peter Folie 9

Mac OS X

• Mac OS X Kernel (Darwin) based on Mach/BSD

• Drivers / BSD services run in kernel mode

Kernel
Environment Mach

BSD
File

System
Networking

NKE

I/O Kit

Drivers

Core Services

Application Services

BSD

QuickTime

Classic Carbon Cocoa
Java
(JDK)

27.12.04 Adam Lackorzynski, Michael Peter Folie 10

Getting it Right the 2nd Time

• Jochen Liedtke published ground-breaking results in the mid-90ies
• Bottom-up approach

– Mach started with a UNIX kernel
• Kernel provides only minimal functionality

– Address spaces with threads
– Inter-Process Communication (IPC)
– Hierarchical memory management

• Under active development
– V.2, X.0, X.2
– 9 supported architectures (L4Ka::Pistachio)

• Alpha, ARM, IA32, AMD64, IA64, Mips64, PPC32, PPC64, SPARCv9

27.12.04 Adam Lackorzynski, Michael Peter Folie 11

Abstraction and unit of execution
• Identified by thread id
• Consists of

– Instruction pointer
– Stack
– Registers, flags, …
 Thread state

• L4 only manages (preserves) IP, SP
and registers

 Entry point, stack allocation (size,
location) and memory is managed by
user-level applications

Application’s
Address Space

Code

Stack

Data

Stack

Thread
Execution
Paths

Threads

27.12.04 Adam Lackorzynski, Michael Peter Folie 12

Page Mapping

• Entry in virtual memory points to page frame in phys. memory

Kernel
Fiasco Microkernel

Pager’s address spaceApplication’s address space

Memory
Page Frames

Virtual Memory Virtual Memory

 Only valid entries in pager’s address space can be mapped to clients

send(…, fpage, ..)

 Map creates an entry in the receiver’s address space pointing to the
same page frame

27.12.04 Adam Lackorzynski, Michael Peter Folie 13

L4 Hierarchical Memory Management

Initial Address Space
Phys. Memory
1-to-1 mapped

Kernel
Fiasco Microkernel

Pager 1 Pager 2

Pager 3 Disk Driver

Application Application

27.12.04 Adam Lackorzynski, Michael Peter Folie 14

Page-Fault Handling

• Communication with pager thread  IPC
 Kernel page-fault handler sets up IPC to pager
• Pager sees faulting thread as sender of IPC

Pager’s address space

Pager Memory

Pager Code

Application’s address space

Kernel
Fiasco Microkernel

Page-Fault
Handler

call(…,fault address, fault eip,…)

Code

Data

27.12.04 Adam Lackorzynski, Michael Peter Folie 15

Page-Fault Resolution

 Pager maps pages of his own address space to the
address space of the client

Kernel
Fiasco Microkernel

Page-Fault
Handler

Pager’s address space

Pager Memory

Pager Code

Application’s address space

send(app_id,fpage(..),…)

Data

Code

27.12.04 Adam Lackorzynski, Michael Peter Folie 16

The Fiasco µ-kernel

• Started by Michael Hohmuth in 1997
– no free L4 implementation was available
– Kernel for TUD OS projects

• Uses lock- and wait-free synchronization to be fully preemptible
➔ Prerequisite for Real-Time

● Written in C++
● Available for x86 and ARM

● AMD64 to come

27.12.04 Adam Lackorzynski, Michael Peter Folie 17

Fiasco-UX

● Port of Fiasco to Linux
● similar to UML

● Easy test and development
● No test hardware required

● Supports other L4 projects
● DoPE, the L4 native GUI
● L4Linux

27.12.04 Adam Lackorzynski, Michael Peter Folie 18

27.12.04 Adam Lackorzynski, Michael Peter Folie 19

Building systems with L4 – system design

Hardware

Tasks

µ-kernel

IPC
I/O

Support
Privileged
Mode

User
Mode

Memory
Management

System services

File Systems

Drivers

Network
Stacks

Name
Server

etc.

Applications
Applications

Applications

27.12.04 Adam Lackorzynski, Michael Peter Folie 20

System Core Services

• µ-kernel alone doesn't do much
• Need several basic services

– Initial task
– Name server
– Memory management
– Loader
– File provider

• Programming support libraries
– libc
– Thread handling
– Synchronization
– ...

This basic functionality is called L4 environment, L4Env, and provides a
higher-level abstraction of the kernel API.

27.12.04 Adam Lackorzynski, Michael Peter Folie 21

Linux on L4

• A port of the Linux kernel to L4
• Support legacy operating systems on L4

– Binary compatible with Linux applications
– Runs standard distributions

• Started in 1996 with Linux 2.0
• Latest: 2.6, based on L4Env

27.12.04 Adam Lackorzynski, Michael Peter Folie 22

L4Linux

L4 Task

L4 Task L4 TaskL4 Task

 Linux kernel runs in an L4 tasks

 The Architecture-dependent part
uses L4 primitives

– Threads
– Mappings
– IRQ IPC

Pro-
cesses

Memory
Manage-
ment

File
Sys-
tems

Net-
work-
ing

Device Drivers

System Call Interface

Hardware Access

Application

Hardware

Application Application

Fiasco Microkernel

System services

27.12.04 Adam Lackorzynski, Michael Peter Folie 23

System Call Handling

• On x86, the kernel is entered for system calls via „int 0x80“
• On L4, this will result in an exception
• Exceptions are delivered as an IPC to the exception handler

Fiasco Kernel

Application

int 0x80

L4Linux User Process

Arch-Independent

Arch-Dependent

L4Linux Server

Syscall Dispatcher

1

2

3

1 Exception IPC to
exception handler

2 Server handles
system call

3 Exception reply to
resume execution

27.12.04 Adam Lackorzynski, Michael Peter Folie 24

DROPS, the Dresden Realtime OPerating System

• Allow the coexistence of real-time and non-real-time
applications
– Common property of current applications, e.g. multimedia
– Requires proper resource management

• Provide real-time guarantees using standard hardware
– Build real-time systems using standard PC and network

hardware
 Make behavior predictable

27.12.04 Adam Lackorzynski, Michael Peter Folie 25

DROPS - Architecture

Fiasco Microkernel

Resource Management
L4Env & Basic Resource Manager

Legacy Applications
Editor, Compiler, …

Mixed Applications
Multimedia, …

Real-Time Applications
Controller, …

Real TimeNon Real Time

Disk Driver

Real-Time
File System

Network
Driver

Window
System

Network
Protocol

L4Linux

S
tu

b
s

27.12.04 Adam Lackorzynski, Michael Peter Folie 26

DROPS – Real-Time Application Model

• Applications are constructed from several real-time
components
– Application sets up and controls chain of components

– Components process data streams

– Data transfer between components e.g. using DSI

Video Player

CPU
Scheduler

Memory
Manager

Video
Decoder

File
System

Audio
Decoder

Window
System

Sound
Driver

Disk
Driver

27.12.04 Adam Lackorzynski, Michael Peter Folie 27

Imprecise Computations
 Idea:

– Split application in mandatory and optional part
– Mandatory part computes necessary result
– Optional part improves the result

Mandatory Optional

Execution time

E
rr

o
r

em

 Example: Radar target tracking
– Results of mandatory part exact enough to be able to follow target
– Optional part improves accuracy of coordinates

27.12.04 Adam Lackorzynski, Michael Peter Folie 28

DROPS: Quality-Assuring Scheduling
 Combines several ideas

– Reservation-based scheduling
– Splitting of applications into several parts (imprecise scheduling)
– Probabilistic guarantees of deadlines (stochastic rate monotonic

scheduling)
 Guarantee that a requested percentage of the optional parts reach

their deadline
 Application Model

– Periodic
– Split into one mandatory and at least one optional part
– Execution times are described by distributions

t

M O1 O2

Time

M O1 O2

Period

M

27.12.04 Adam Lackorzynski, Michael Peter Folie 29

Nizza – Security Principles

• Minimal Trusted Computing Base (TCB) per application / service
– Small security kernel – microkernel
– Small set of small compontents (servers, ...)
– Well-defined interfaces
– Application-specific selection of platform components

• Split applications / services
– Sensitive part on trusted platform
– Less-sensitive (convenient) part of legacy OS

27.12.04 Adam Lackorzynski, Michael Peter Folie 30

Nizza – Security Objectives

Confidentiality No unauthorized access to information

Integrity No unauthorized, unnoticed modification of information

Recoverability No permanent damage of information

Availability Timeliness of service

27.12.04 Adam Lackorzynski, Michael Peter Folie 31

Nizza – System Security Objectives

• Secure and unsecure applications (trusted vs. untrusted)
– Secure / trusted booting
– Trusted path from/to user – Secure Graphical User Interface

• Protection against Trojan Horses
– Storage of sensitive information

• Cryptographic keys, personal data
• Compatibility

– Legacy applications / Operation systems
– Standard hardware plus up-to-date enhancements (e.g. TPM)
– User-friendliness

27.12.04 Adam Lackorzynski, Michael Peter Folie 32

Nizza - Features

• Fine-grained isolation between applications

• Minimal TCB for trusted applications / services
Reuse of untrusted components via Trusted Wrappers

– Sandboxing

– Perimeter Wrapping

• Support for trusted computing hardware

• Open Source alternative to Microsoft NGSCB

27.12.04 Adam Lackorzynski, Michael Peter Folie 33

The NIZZA Security Architecture

Minimal
Secure
Platform

Home
banking

...
E-Sign

GUISecure
StorageLoader User

Auth. Backup I/ONS

Linux AppLinux AppLinux Apps

Fiasco

L4Linux

X11

27.12.04 Adam Lackorzynski, Michael Peter Folie 34

µsina - Secure Microkernel-based System
Architecture

• Build an IPsec VPN gateway with microkernel technology
• Reduce complexity of underlying platform (TCB)
• Run security sensitive components separately

– (Re-)Use other software for untrusted parts
• Viaduct: IPsec component for en-/decryption
• Encrypted and unencrypted traffic are handled by different L4Linux

instances

27.12.04 Adam Lackorzynski, Michael Peter Folie 35

µsina - Secure Microkernel-based System
Architecture

L4 Microkernel

L4Linux

Privileged
Mode

User
Mode

L4Linux

Network Network InternetViaduct:
Encryption /
Decryption

System Core Services

eth0 eth1

27.12.04 Adam Lackorzynski, Michael Peter Folie 36

Future

• Embedded systems

• Virtualization

• Advanced kernel features

– communication control

– kernel memory management

27.12.04 Adam Lackorzynski, Michael Peter Folie 37

L4 Related Projects

• Mungi

• DD/OS

• NomadBIOS

• L4Hurd

27.12.04 Adam Lackorzynski, Michael Peter Folie 38

Q/A?

 http://os.inf.tu-dresden.de/
 http://os.inf.tu-dresden.de/fiasco/
 http://os.inf.tu-dresden.de/fiasco/ux/
 http://os.inf.tu-dresden.de/L4/
 http://os.inf.tu-dresden.de/drops/
 http://os.inf.tu-dresden.de/L4/LinuxOnL4/

 http://l4linux.org/

 http://l4ka.org/

