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System Issues

● Convential systems are
● Complex

● Linux kernel at least 500,000 LoC
● Prone to errors

● Drivers
● All system components run in privileged mode
● Inflexible

● Global policies
● Large Trusted Computing Base (TCB)
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Insights

Observation:
Most kernel functionality does not need CPU privileges, like:
– Filesystems
– Driver functionality
– User management
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What is really needed

Jochen Liedtke: “A microkernel does no real work”

 Kernel provides only inevitable mechanisms
 No policies enforced by the kernel

What is inevitable?

 Scheduling

 Safe construction Address Spaces

 Communication Threads

MechanismsAbstractions

 This should be sufficient for everything
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The Marred Perception of Microkernels

• Supposed to be slow
– Not true any more

• No obvious benefit
– Infamous dispute Torvalds vs. Tannenbaum
– How much worth is manageability of complexity?

• GNU Hurd
– Late
– Slow
– Constantly lagging behind other OS in functionality
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The Case for Microkernels

• Complexity needs to be handled
– Structure beyond monolithic kernels are needed
– Several candidates

• Virtualisation
• Paravirtualisation
• Microkernel

• Implementation of some functionality is even simplified 
– Real time

• DROPS
• RTLinux

– Security
• Substantially smaller trusted computing base
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Agenda

● Introduction
● Agenda
● L4 µ-kernels
● Legacy support
● Security
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The Rise and Demise of the First 
Microkernel

• First interest in mid-eighties
• Mach

– Started with stripped down UNIX kernels
– High level abstractions

• Asynchronous messages
• Ports
• Virtual memory management

– Adopted by IBM for future OS development
• Disastrous results

– None of the ambitious goals achieved
• The idea seemed to be a failure

• BUT: still alive in MacOS X
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Mac OS X

• Mac OS X Kernel (Darwin) based on Mach/BSD

• Drivers / BSD services run in kernel mode

Kernel 
Environment Mach

BSD
File 

System
Networking

NKE

I/O Kit

Drivers

Core Services

Application Services

BSD

QuickTime

Classic Carbon Cocoa
Java
(JDK)
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Getting it Right the 2nd Time

• Jochen Liedtke published ground-breaking results in the mid-90ies
• Bottom-up approach 

– Mach started with a UNIX kernel
• Kernel provides only minimal functionality 

– Address spaces with threads
– Inter-Process Communication (IPC)
– Hierarchical memory management

• Under active development
– V.2, X.0, X.2
– 9 supported architectures (L4Ka::Pistachio)

• Alpha, ARM, IA32, AMD64, IA64, Mips64, PPC32, PPC64, SPARCv9
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Abstraction and unit of execution
• Identified by thread id
• Consists of

– Instruction pointer
– Stack 
– Registers, flags, …
 Thread state

• L4 only manages (preserves) IP, SP 
and registers

 Entry point, stack allocation (size, 
location) and memory is managed by 
user-level applications

Application’s 
Address Space

Code

Stack

Data

Stack

Thread 
Execution 
Paths

Threads
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Page Mapping

• Entry in virtual memory points to page frame in phys. memory

Kernel
Fiasco Microkernel

Pager’s address spaceApplication’s address space

Memory
Page Frames

Virtual Memory Virtual Memory

 Only valid entries in pager’s address space can be mapped to clients

send(…, fpage, ..)

 Map creates an entry in the receiver’s address space pointing to the 
same page frame
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L4 Hierarchical Memory Management

Initial Address Space
Phys. Memory
1-to-1 mapped

Kernel
Fiasco Microkernel

Pager 1 Pager 2

Pager 3 Disk Driver

Application Application
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Page-Fault Handling

• Communication with pager thread  IPC
 Kernel page-fault handler sets up IPC to pager
• Pager sees faulting thread as sender of IPC

Pager’s address space

Pager Memory

Pager Code

Application’s address space

Kernel
Fiasco Microkernel

Page-Fault
Handler

call(…,fault address, fault eip,…)

Code

Data
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Page-Fault Resolution

 Pager maps pages of his own address space to the 
address space of the client

Kernel
Fiasco Microkernel

Page-Fault
Handler

Pager’s address space

Pager Memory

Pager Code

Application’s address space

send(app_id,fpage(..),…)

Data

Code
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The Fiasco µ-kernel

• Started by Michael Hohmuth in 1997
– no free L4 implementation was available
– Kernel for TUD OS projects

• Uses lock- and wait-free synchronization to be fully preemptible
➔ Prerequisite for Real-Time

● Written in C++
● Available for x86 and ARM

● AMD64 to come
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Fiasco-UX

● Port of Fiasco to Linux 
● similar to UML

● Easy test and development
● No test hardware required

● Supports other L4 projects
● DoPE, the L4 native GUI
● L4Linux
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Building systems with L4 – system design

Hardware

Tasks

µ-kernel

IPC
I/O

Support
Privileged
Mode

User
Mode

Memory
Management

System services

File Systems

Drivers

Network
Stacks

Name
Server

etc.

Applications
Applications

Applications
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System Core Services

• µ-kernel alone doesn't do much
• Need several basic services

– Initial task
– Name server
– Memory management
– Loader
– File provider

• Programming support libraries
– libc
– Thread handling
– Synchronization
– ...

This basic functionality is called L4 environment, L4Env, and provides a 
higher-level abstraction of the kernel API.
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Linux on L4

• A port of the Linux kernel to L4
• Support legacy operating systems on L4

– Binary compatible with Linux applications
– Runs standard distributions

• Started in 1996 with Linux 2.0
• Latest: 2.6, based on L4Env
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L4Linux

L4 Task

L4 Task L4 TaskL4 Task

 Linux kernel runs in an L4 tasks

 The Architecture-dependent part 
uses L4 primitives

– Threads
– Mappings
– IRQ IPC

Pro-
cesses

Memory
Manage- 
ment

File
Sys-
tems

Net-
work-
ing

Device Drivers

System Call Interface

Hardware Access

Application

Hardware

Application Application

Fiasco Microkernel

System services
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System Call Handling

• On x86, the kernel is entered for system calls via „int 0x80“
• On L4, this will result in an exception
• Exceptions are delivered as an IPC to the exception handler

Fiasco Kernel

Application

int 0x80

L4Linux User Process

Arch-Independent

Arch-Dependent

L4Linux Server

Syscall Dispatcher

1

2

3

1 Exception IPC to
exception handler

2 Server handles
system call

3 Exception reply to
resume execution
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DROPS, the Dresden Realtime OPerating System

• Allow the coexistence of real-time and non-real-time 
applications
– Common property of current applications, e.g. multimedia
– Requires proper resource management 

• Provide real-time guarantees using standard hardware
– Build real-time systems using standard PC and network 

hardware
 Make behavior predictable
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DROPS - Architecture

Fiasco Microkernel

Resource Management
L4Env & Basic Resource Manager

Legacy Applications
Editor, Compiler, …

Mixed Applications
Multimedia, …

Real-Time Applications
Controller, …

Real TimeNon Real Time

Disk Driver

Real-Time
File System

Network
Driver

Window
System

Network
Protocol

L4Linux

S
tu

b
s
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DROPS – Real-Time Application Model

• Applications are constructed from several real-time 
components
– Application sets up and controls chain of components

– Components process data streams 

– Data transfer between components e.g. using DSI

Video Player

CPU
Scheduler

Memory
Manager

Video
Decoder

File
System

Audio
Decoder

Window
System

Sound
Driver

Disk
Driver
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Imprecise Computations
 Idea: 

– Split application in mandatory and optional part
– Mandatory part computes necessary result
– Optional part improves the result

Mandatory Optional

Execution time

E
rr

o
r

em

 Example: Radar target tracking
– Results of mandatory part exact enough to be able to follow target
– Optional part improves accuracy of coordinates
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DROPS: Quality-Assuring Scheduling
 Combines several ideas

– Reservation-based scheduling
– Splitting of applications into several parts (imprecise scheduling)
– Probabilistic guarantees of deadlines (stochastic rate monotonic 

scheduling)
 Guarantee that a requested percentage of the optional parts reach 

their deadline
 Application Model

– Periodic
– Split into one mandatory and at least one optional part
– Execution times are described by distributions

t

M O1 O2

Time

M O1 O2

Period

M
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Nizza – Security Principles

• Minimal Trusted Computing Base (TCB) per application / service
– Small security kernel – microkernel
– Small set of small compontents (servers, ...)
– Well-defined interfaces
– Application-specific selection of platform components

• Split applications / services
– Sensitive part on trusted platform
– Less-sensitive (convenient) part of legacy OS
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Nizza – Security Objectives

Confidentiality No unauthorized access to information

Integrity No unauthorized, unnoticed modification of information

Recoverability No permanent damage of information

Availability Timeliness of service
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Nizza – System Security Objectives

• Secure and unsecure applications (trusted vs. untrusted)
– Secure / trusted booting
– Trusted path from/to user – Secure Graphical User Interface

• Protection against Trojan Horses
– Storage of sensitive information

• Cryptographic keys, personal data
• Compatibility

– Legacy applications / Operation systems
– Standard hardware plus up-to-date enhancements (e.g. TPM)
– User-friendliness
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Nizza - Features

• Fine-grained isolation between applications

• Minimal TCB for trusted applications / services
Reuse of untrusted components via Trusted Wrappers

– Sandboxing

– Perimeter Wrapping

• Support for trusted computing hardware

• Open Source alternative to Microsoft NGSCB
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The NIZZA Security Architecture

Minimal 
Secure 
Platform

Home
banking

...
E-Sign

GUISecure
StorageLoader User

Auth. Backup I/ONS

Linux AppLinux AppLinux Apps

Fiasco

L4Linux

X11
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µsina - Secure Microkernel-based System 
Architecture

• Build an IPsec VPN gateway with microkernel technology
• Reduce complexity of underlying platform (TCB)
• Run security sensitive components separately

– (Re-)Use other software for untrusted parts
• Viaduct: IPsec component for en-/decryption
• Encrypted and unencrypted traffic are handled by different L4Linux 

instances
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µsina - Secure Microkernel-based System 
Architecture

L4 Microkernel

L4Linux

Privileged
Mode

User
Mode

L4Linux

Network Network InternetViaduct:
Encryption /
Decryption

System Core Services

eth0 eth1
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Future

• Embedded systems

• Virtualization

• Advanced kernel features

– communication control

– kernel memory management
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L4 Related Projects

• Mungi

• DD/OS

• NomadBIOS

• L4Hurd
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Q/A?

  http://os.inf.tu-dresden.de/
  http://os.inf.tu-dresden.de/fiasco/
  http://os.inf.tu-dresden.de/fiasco/ux/
  http://os.inf.tu-dresden.de/L4/
  http://os.inf.tu-dresden.de/drops/
  http://os.inf.tu-dresden.de/L4/LinuxOnL4/

  http://l4linux.org/

  http://l4ka.org/


