
Copyright© 2003 Avaya Inc. All rights reserved Avaya - Proprietary (Restricted) Solely for authorized persons having a need to know pursuant to Company instructions

Black Ops of DNS
Chaos Communications Camp 2003

Dan Kaminsky, CISSP

Senior Security Consultant

Copyright© 2004 Avaya Inc. All rights reserved 2

Your Friendly Investigator

• Who am I?

– Senior Security Consultant, Avaya Enterprise Security
Practice

– Author of “Paketto Keiretsu”, a collection of advanced
TCP/IP manipulation tools

– Speaker at Black Hat Briefings

• Black Ops of TCP/IP series

• Gateway Cryptography w/ OpenSSH

– Protocol Geek

Copyright© 2004 Avaya Inc. All rights reserved 3

The Subject Of Our Investigation

• DNS: The Domain Name System

– Created by Paul Mockapetris in 1983

– Fast, easy, accurate way to, given a host’s name, find out it’s
number

• The Internet doesn’t run on names any more than the telephone
network does – everything is numbered for efficiency.

– “Internet’s equivalent of 411”
• Actually more critical – people will keep the same phone number

for years, while some services change their IP addresses
constantly

– Was becoming a management nightmare to pass around lists of
names/numbers

– “Call 411 by default”

• Internet has no secure mechanism for sending a fail/redirect
message (“the number you’ve called has been disconnected, the
new number is…”)

Copyright© 2004 Avaya Inc. All rights reserved 4

The Nature Of Our Investigation

• The Question: Is it possible for DNS to do anything more
interesting than return numbers from names?

– Simple answer: Of course, it can return mail servers, names
from numbers, SPF records, etc.

– Better answer: Why do you ask?
• Second oldest “uncontested protocol” for what it does

– Telnet’s moved to SSH, Gopher and FTP moved to HTTP

– Only SMTP is in a similar class

• Globally deployed, universally employed

• Routes everywhere, through pretty much any network.

• Was heavily queried during recent MS Blaster worm.

– Ultimate answer: Yes, or this would be a very short talk!

• The strategy: Does DNS have any unexpected similarities –
“homologies” – to other protocols I consider interesting?

– Since I consider network tunneling interesting…

Copyright© 2004 Avaya Inc. All rights reserved 5

The Totally Expected And Well Known
Homology Within The Structure of DNS
• DNS servers can carry arbitrary data

– Not just English host names and IP addresses!

– Many constraints are enforced by the DNS architecture
• Total packet size must remain less than 512bytes (by default)

• Downstream Channel: Content of arbitrary TXT record
– Very flexible near-arbitrary content field, supports multiple independent order-

maintained subrecords <256bytes long

– Data probably needs to be text compatible, so we Base64 this data

– Could use any of a number of other channels – MX records worked very well
too

• Upstream Channel: Name of host being looked up
– <253 characters, <64 characters between dots, only 63 valid

characters

– Bits are bits, so we can use Base32 to put ~110 arbitrary bytes in a
query name

– I’m not the first person to put odd things in DNS; this has been done
for everything from Bittorrent Seed Distribution to Online Calculators

Copyright© 2004 Avaya Inc. All rights reserved 6

Arbitrary Data Detail

• What arbitrary encapsulation looks like

– Base64 in TXT Records (~220 bytes per packet)
• dig 0.b64.alt.doxpara.com txt

…
0.b64.alt.doxpara.com. 60 IN TXT
"IyEvdXNyL2Jpbi9wZXJsIAoKJFZFUlNJT04gPSAwLjE7Cgp1c2UgRmNud
Gw7CnVzZSBOZXQ6OkRO\010UzsKdXNlIE5ldDo6RE5TOjpOYW1lc2Vydm
VyOwojdXNlIExXUDo6U2ltcGxlOwp1c2UgTFdQOjpV\010"

– Base32 in CNAME Records (~110 bytes per packet)
• dig 0.get.b32.alt.doxpara.com

…
0.get.b32.alt.doxpara.com. 0 IN CNAME
orugs4zanfzsayjaorsxg5ban5tca5dimuqgk3lfojtwk3tdpeqge4tpmfsggyl.toq
qhg6ltorsw2cq.0.set.b32.alt.doxpara.com.

• orugs4zanfzsayjaorsxg5ban5tca5dimuqgk3lfojtwk3tdpeqge4tpmfsggyl.toq
qhg6ltorsw2cq.0.set.b32.alt.doxpara.com. 0 IN A 1.0.0.0

– DNS Compression – no redundant data

Copyright© 2004 Avaya Inc. All rights reserved 7

Under Development – Hi Bandwidth
Payloads

• 512 byte limit exists – but can be waived

– EDNS0 OPTion for DNSSEC

– Can specify >MTU limits (IP Fragmentation?)

– Able to go from 220 bytes down to 1024 bytes – near 5x
improvement!

Copyright© 2004 Avaya Inc. All rights reserved 8

Looks Like…

Copyright© 2004 Avaya Inc. All rights reserved 9

Unexpected Homologies Within The
Structure of DNS
• DNS Proxies

– Those that do not know will ask those that do

– “Recursive Lookup”

– Lookups are heavy processes; was necessary to centralize the work

• DNS Caches

– If one name server does proxy for another, results are not ephemeral,
rather they’re cached for a definable amount of time (up to a week in
most implementations)

• DNS Routes

– Those that don’t know, and don’t want to ask those that do, can
instead reply with a route recommendation of who else to speak to.
Those that receive route recommendations will generally follow them.

– Used to implement the DNS hierarchy
• .com routes to doxpara.com routes to www.doxpara.com

– “Iterative Lookup”

Copyright© 2004 Avaya Inc. All rights reserved 10

Pause for Impact

• So, in summary:
– We can move arbitrary data.

– We can bounce it off arbitrary servers.
• Over 150K on 64.*, over 2M total

– We can route it in arbitrary ways

– We can store data in a hop-by-hop basis

• “DNS is a globally deployed, routing, caching overlay
network running astride the entire public and private
Internet.”

– Yeah, that’s pretty interesting

– Terms usually used to describe peer to peer networks

Copyright© 2004 Avaya Inc. All rights reserved 11

Weapon of Choice

• Under Development: OzymanDNS

– Toolkit for advanced DNS investigation

– Built using Perl’s Net::DNS library

• Shockingly mature packet mangling library for DNS
manipulation

– Implements many of the concepts we’re discussing here
today

– Server: Nomde – Experimental DNS Server

– Clients: You’ll see

Copyright© 2004 Avaya Inc. All rights reserved 12

DNS Tunneling[0]: Starting Simple

• Is it possible to achieve useful network connectivity out from even
extraordinarily egress-filtered networks?

– Answer: Yes – by encapsulating all traffic inside of
necessarily passed DNS queries

– Constraint: Must remain 100% RFC Compliant

• What makes this particularly interesting?
– “Routes everywhere, through pretty much any network.”

• Escapes most forms of egress restriction
– And more.

– DNS was not designed to do this, so this makes a particularly
broken network to design connectivity solutions for

– Good introduction; useful

Copyright© 2004 Avaya Inc. All rights reserved 13

DNS Tunneling[1]: Who’s doing it?

• Who?

– NSTX most popular

• Creates a “virtual network device” that routes IP (actually,
Ethernet frames) over DNS

• Linux Only

– Rumors of various botnets / malware using DNS as a
covert channel

Copyright© 2004 Avaya Inc. All rights reserved 14

DNS Tunneling[2]: Another Approach

• Starting “Simple”

– NSTX requires kernel cooperation to get at IP

– Lets make something that doesn’t require the kernel, but
still allows remote networking

• Remote Networking: “I’m on this network, but all my traffic
is routed through that network over there – preferably
securely”

• Normally done with VPNs (also kernel level)

• SSH Dynamic Forwarding allows secure remote networking
over a single TCP port (Poor Man’s VPN)

• So lets start with SSH over DNS

Copyright© 2004 Avaya Inc. All rights reserved 15

DNS Tunneling[3]:
Problems

• DNS is not TCP

– TCP moves bytestreams, DNS moves records

• Blocks of data

– TCP lets either side speak first, while in DNS, the server
can only talk if the client asks something

– TCP is 8 bit clean, while DNS can only move a limited set
of characters in each direction (Base64 / Base32)

– This seems so familiar…

Copyright© 2004 Avaya Inc. All rights reserved 16

DNS Tunneling[4]:
Mini-HTTP
• The semantics of DNS are surprisingly similar to those of HTTP

– The BIG difference: Absurdly small packet sizes

• Almost but not quite powers of 2

• grr

• Many tools have been written with the “lets tunnel everything over
HTTP” methodology because it gets through firewalls easier (see
first point)

– SOAP (RPC over HTTP)

– GNU httptunnel (TCP Stream over HTTP)

• Since DNS has similar semantics, we can pull off similar feats

– droute: DNS Stream Router

Copyright© 2004 Avaya Inc. All rights reserved 17

DNS Tunneling[5]: Routing through droute

• Different directions have different semantics

– Upstream: Generally limited bandwidth (both needed and available),
can send data on demand

• Standard lookups of long Base32 encoded names

– Downstream: More bandwidth, but must poll for new content
• TXT lookups returning Base64’d data

– Address contains byte offset from beginning of stream

– Server manages session state

• If a poll fails to return any data, triple the delay until the next poll (up to a
maximum)

• Set delay to minimum whenever data is sent

• Present implementation is “single-threaded” – only one packet can be
outstanding at any given time

– This is a temporary implementation bug.
• Present high-speed status: 16K/s throughput, 20% packet loss

• Every packet bouncing off a different public nameserver

Copyright© 2004 Avaya Inc. All rights reserved 18

So Egress Is Feasible…

• Is it possible to achieve useful network connectivity
into even extraordinarily ingress-filtered networks?

– That’s a much more complicated answer

• But no is just two letters…

Copyright© 2004 Avaya Inc. All rights reserved 19

Alice Wears Two Hats.

• Alice-as-requestor: “What’s the number for foo.com?”

• Alice-as-responder: “Oh, you don’t know? It’s 1.2.3.4.”

– When does Alice become the responder? When the DNS
hierarchy routes a name lookup request to her.

• .com: foo.com is hosted by alice

• Alice: foo.com is 1.2.3.4

– Alice as responder can manipulate routes and caches

• 16-32 levels of redirection are allowed

– Once someone’s been forwarded to Alice, they can be
forwarded again…to any IP address.

Copyright© 2004 Avaya Inc. All rights reserved 20

DNS Source Routing[0]:
The Problem At Hand

• DNS trusts the hierarchy to tell it where to route to next

– The hierarchy is public

– What the DNS server can route to isn’t necessarily

• A recursive, dual homed DNS server can be made to route
requests back into an internal private network

• Only DNS/53 traffic can be so proxied

– Custom internal malware – no more polling, it now accepts
incoming connections

» SSH over DNS, everything else here

– Potential for attacks against internal active directory – attack
must be contained to query name

Copyright© 2004 Avaya Inc. All rights reserved 21

DNS Source Routing[1]: HOWTO

• Nomde implements an echo service – requests to it are addressed
according to the name being sought

– This, of course, is very different than the basic concept of a directory
– something that’s written few, but read many.

• What it looks like

– $dig 10-0-1-55.echo.alt.doxpara.com ns
…
10-0-1-55.echo.alt.doxpara.com. 15 IN NS ns.10-0-1-
55.echo.alt.doxpara.com.

– $dig ns.10-0-1-55.echo.alt.doxpara.com a
…
ns.10-0-1-55.echo.alt.doxpara.com. 11 IN A 10.0.1.55

• What it does

– All requests to *.10-0-1-55.echo.alt.doxpara.com will be routed to
10.0.1.55, and all replies from the internal address will route back

Copyright© 2004 Avaya Inc. All rights reserved 22

DNS Source Routing[2]: The Easy Fix?

• “Fine, we’ll just disable recursion on external interfaces”

– “If she can’t be Alice-the-Requester, she won’t be Alice-the-
Responder”

– Responder-level access is required to issue the internal
redirects

– If we disable “external recursion” (i.e. the willingness for the
DNS server to accept lookup requests from arbitrary hosts),
the name server will never issue lookups to Alice, who will
thus never be able to provide those evil redirects

• Question: Is it still possible to trigger lookups against an attacker-
controlled nameserver, even from a server that’s not accepting
lookup requests from the public?

– Answer: Yes, if you can manipulate trusted applications
into starting a lookup chain that leads to you

Copyright© 2004 Avaya Inc. All rights reserved 23

DNS Source Routing[3]: Induced
Recursion
• Eliminating open recursion (proxy for everyone) only eliminates one path

towards the hierarchy being parsed

• Many open applications respond to requests with DNS lookups

– Mail servers do MX lookups

– Everything does PTR lookups (IP->Name)
• SSHD

• Apache

• Probably Your IDS
– How do I know? Scan 16M IP addresses, you’d be amazed how many hosts

automatically reverse lookup your IP

– It helps that I returned TTL=0 for my PTR record – system has to lookup for
every packet that worries it 

– Oh: Forensics people, I see your nslookups. Hi.

– Just because a lookup starts out as a PTR requests doesn’t
mean it’ll always remain one

• Can route IP lookups to foreign name servers, which then need to
be independently looked up.

Copyright© 2004 Avaya Inc. All rights reserved 24

DNS Source Routing[4]:
 Recursion-As-Route Intro
• This is the next generation attack still under development – details

may change

• Once an application triggers the recursion engine on the DNS, the
hierarchy is followed to the attacker

• The attacker does not answer the query directly, rather, forwards
to an out-of-bailiwick name it also controls

– Why? Because now the recursion engine must start from
scratch, looking for a new name.

– A new name like, “hello-ssh-are-you-there.attacker-new.com”

– This name is NS-forwarded back inside the target network

– The payload is contained in the query to the internal IP

• But how to respond?

Copyright© 2004 Avaya Inc. All rights reserved 25

DNS Source Routing[5]:
 Recursion-As-Route Continues
• If it worked once, why not again?

• We forward the request to somewhere in the original attacker
domain, which is now once again out of bailiwick

– SSH-1-99-OpenSSH-3-7-1p1.attacker-old.com

• The name server has already cached the values for com and
attacker-old.com, so it’s quite quick to “lookup” the SSH
initialization string 

• We can ping back and forth, repeatedly, until we hit the
nameserver’s limit for recursion depth for the original reverse
name lookup

– Best to eventually respond – with TTL=0 – so that another
packet will start another lookup chain

– We can of course respond with anything.

Copyright© 2004 Avaya Inc. All rights reserved 26

Aside: Don’t just log the PTR name,
please.

• nslookup 64.81.64.164 4.2.2.1
164.64.81.64.in-addr.arpa name = 127.0.0.1.

• This does very bad things to your logs.

Copyright© 2004 Avaya Inc. All rights reserved 27

More Risks of Open Recursion

• Widespread recursion actually isn’t bad – it contributes to the
stability of DNS, which by all rights should have collapsed ages
ago – but maybe there’s too much of a good thing

• Tunneling challenge: Is it possible for two people to communicate
through DNS, without either of them controlling a server?

– Can’t upload records

– Can cause recursive queries to occur

• Recursive queries – that are successful – are cached

– State change in the server

• Recursion can be disabled by the requestor – “if you’ve already
got the data, tell me, but if not, don’t go out and look it up”

– Externally visible state change in the server

Copyright© 2004 Avaya Inc. All rights reserved 28

Single-Bit Data Transfer[0]: HOWTO

• Sending:

– Step 1: Split message into individual bits.

– Step 2: For each byte that will be available for reading, do a recursive
lookup against a “start bit” address.

– Step 3: For each bit that is 1, do a recursive lookup against a
wildcard-hosted name that identifies that bit.

• Receiving:

– Step 1: Do a lookup for the first byte’s start bit. If set to 1…

– Step 2: Do non-recursive lookups against names that map against all
eight bits. Those names that return answers are 1, those that don’t
are 0.

– Step 3: Integrate bits into a byte and save. Increment byte counter
and return to step 1.

• Deleting:

– Optional: Simply do a recursive lookup to clear the 0’s

Copyright© 2004 Avaya Inc. All rights reserved 29

DNS Cache Snooping

• We are not the only users of the DNS cache

– Other hosts use DNS to do useful things

– We can thus track them being useful

– Best paper on subject: Luis Grangeia “Snooping the
Cache for Fun and Profit”

• Miname – DNS scanner – Able to DNS cache snoop on
Internet Scale (find how many sites are looking up

– Can detect not only that a service was used, but when

Copyright© 2004 Avaya Inc. All rights reserved 30

Single-Bit Data Transfer[1]: Implications

• Bidirectionality

– Simply use two separate channels, or timeshare one channel

– It’s just a shared medium

• Adaptability

– Anything that can be changed by one and seen by another can
be used to send data

• Web Counters

• IP ID counters in IP Stacks

• Paul Revere’s lamps in the tower – the British are Coming!

– “Did it increment or not? Were there sharp spikes between
6:01 and 6:02?”

– “You can always send a bit” – can we send more?

Copyright© 2004 Avaya Inc. All rights reserved 31

Last Modified over DNS[0]

• Slashdot Story: “RSS IS OVERLOADING THE INTERNET!”

– Lots and lots of news readers do “big heavy” HTTP queries
every hour on the hour

– Looks like a DDOS

– They’re interested in data only if it’s new – check Last-Modified:
value (or use If-Modified-Since:)

• Question: Is it possible to use DNS to solve this problem?

– Could just put Last-Modified in DNS TXT

• But it’s just a time…and times are 32 bit ints…

• You know what else is 32 bits? That DNS is really good at
transmitting?

Copyright© 2004 Avaya Inc. All rights reserved 32

Last Modified over DNS[1]

• Representing modification dates as miscasted IP addresses

– Set IP address to little endian representation of time since
~1973.

– WARNING: WILL FAIL IN 2038

– Extremely simple client code

• glance.c:

– host = gethostbyname(argv[1]);
time = (void *)host->h_addr;

• $./glance.exe www_cnn_com.glance.alt.doxpara.com
1091117481 (Thu Jul 29 16:11:21 2004 GMT)

– Caveat: Only support ‘.’ (as ‘_’) and ‘/’ (as ‘-’) in URL string

– More requires url encoding or Base32

Copyright© 2004 Avaya Inc. All rights reserved 33

Domaincast[0]

• Question: Is it possible to distribute large files, quickly, using
nothing but DNS?

– Answer: Yes, by leveraging the sheer enormity of the DNS
infrastructure.

• The basic concept

– Normal DNS operation: Talk to your own server; it retrieves
data on demand from the official server upstream. The data is
consistent for everyone.

– Domaincast DNS operation: Acquire a list of name servers
from the data source. Each server has been seeded with n
blocks of data. Acquire each server’s cached subset of the
entire file. Reassemble.

• This is possible. This is not necessarily a good idea. Don’t try
this at home.

Copyright© 2004 Avaya Inc. All rights reserved 34

Domaincast[1]

• Sidestepping Limited Resources

– Capacity
• 20K/server = ~80 records @ 256bytes

• 700MB = Knoppix, a full Linux distribution

• 700MB / 20K = 35,000 servers required
– Number of DNS servers detected in a single class A: +140,000 (More on this

later)

– Speed
• 1Kb/s * 35,000 = 35MB/s

– Would require upload of ~3.5MB/s

– ~50% packet / formatting overhead = 17MB/s

• Not going to achieve peak bandwidth (it’d shred reliability) – but not going
to get 1k/s either

– Reliability
• Caches are not determinate – they can drop on demand

• So we use an M-of-N splitting algorithm compat. with small blocks

Copyright© 2004 Avaya Inc. All rights reserved 35

Domaincast[2]

• Precached index of hops to be scanned is certainly the
easiest mechanism for data distribution

– 35,000 * 4 = 140K

– 140K at 20K/s is 7 servers – can just distribute the
hoplist over Domaincast too.

• There are more complex algorithms (in the earlier
version of these slides) but they’re ultimately not
necessary 

Copyright© 2004 Avaya Inc. All rights reserved 36

But What Of Streams?

• Precached hop-lists can’t really adapt to streaming data

• Question: Is is possible to transmit a live stream of
data via the DNS infrastructure?

– Answer: Of course – just populate on demand and issue
pointers to the latest data. Do it right and you’ll even
cache correctly…

Copyright© 2004 Avaya Inc. All rights reserved 37

KDNS[0]

• Voice over DNS – TXT w/ Streaming Audio

• Speex codec supports Voice compression at ~2kbps
(best public codec)

– Ends up being about 276 bytes/second
• 353 bytes w/ Ogg headers.

– We can traffic 276 bytes per second through even
extremely slow DNS servers

• Power to the Caching People
– Use a TTL of WINDOW seconds (~20s)

– All listeners behind the same DNS server will split the
same stream

Copyright© 2004 Avaya Inc. All rights reserved 38

KDNS[1]

• Server HOWTO

– <timestamp>.server.com

• TTL=WINDOW

• TXT (or MX) = 0.88s of audio

– latest.server.com

• CNAME to <window>.<timestamp>.server.com

• TTL=0

• This may be broken by resolvers with minimum TTL
requirements (implemented to fight Dynamic DNS server
loads)

Copyright© 2004 Avaya Inc. All rights reserved 39

KDNS[2]

• Client HOWTO

– Retrieve latest.server.com, learn
<window>.<timestamp>.server.com

– Retrieve audio samples from <timestamp-window>.server.com
up through <timestamp>.server.com

• Prefer to start playing at a packet that has spent some time
decrementing in the cache – binary search for oldest sample
within the window

• Add random jitter for the start sample – this way, everyone’s at a
different point in the stream, and if the “lead looker” drops,
someone else will be next up to be first in line

• “geta” implementation doesn’t support windowing or random jitter
yet, but seems to work quite well regardless

– Still caches!

Copyright© 2004 Avaya Inc. All rights reserved 40

KDNS[3]

• Alternate Implementation: Proxy-Friendly HTTP
Streaming

– Abandon DNS entirely; simply distribute 3-10s chunks of
audio over HTTP and let proxy servers share them out

• Can potentially use .PLS/.M3U chaining

– Requires client cooperation, and greatly increases
latency, but solves the (bandwidth) problem that proxies
don’t cache streams

– Proxies support TTL’s through the Expires: option

– HTTP of course supports much higher bandwidth

Copyright© 2004 Avaya Inc. All rights reserved 41

Conclusions

• 1. DNS is globally deployed – you use it as a client, you probably
depend on it as a server

• 2. As the rest of IP networking has become progressively more
and more filtered, DNS’s level of interconnectivity has (for
important functionality reasons) remained constant, and in some
ways outstrips the services offered by a completely unfirewalled
host.

• 3. This connectivity can be used to offer a range of services, from
encrypted VPN-style linkage, to a completely silent but remotely
addressable trojan horse, to an unexpectedly useful distributed
caching audio system.

• 4. DNS should not be disabled, re-engineered, blocked, or heavily
interfered with at this time – but perhaps we can start paying
closer attention to its traffic.

