
© 2004, Joanna Rutkowska, http://invisiblethings.org. 1

Passive Covert Channels
Implementation in Linux Kernel

Chaos Communication Congress,
December 27th -29th 2004, Berlin

Joanna Rutkowska
joanna (at) invisiblethings (dot) org

© 2004, Joanna Rutkowska, http://invisiblethings.org. 2

Passive Covert Channels

Do not generate their own traffic

Only change some fields in the packets generated by user
(like HTTP requests)

Best used for stealing data from desktop computers

Usually requires that the attacker control the company’s
gateway (for example works in ISP)

Typical usage: information stealing from corporate
Workstations and servers (in “mirror mode”, see later)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 3

Passive Covert Channels

© 2004, Joanna Rutkowska, http://invisiblethings.org. 4

How to implement?

Let’s first have a look at how packets are handled inside
the Linux kernel…

© 2004, Joanna Rutkowska, http://invisiblethings.org. 5

Handling Incoming Packets

© 2004, Joanna Rutkowska, http://invisiblethings.org. 6

Incoming IP packets

© 2004, Joanna Rutkowska, http://invisiblethings.org. 7

Local delivery

© 2004, Joanna Rutkowska, http://invisiblethings.org. 8

Forwarding packets

© 2004, Joanna Rutkowska, http://invisiblethings.org. 9

Outgoing packets

© 2004, Joanna Rutkowska, http://invisiblethings.org. 10

Two important techniques

ptype_* handlers Netfilter hooks

© 2004, Joanna Rutkowska, http://invisiblethings.org. 11

Protocol handlers

© 2004, Joanna Rutkowska, http://invisiblethings.org. 12

Key structure: packet_type

struct packet_type
{

 unsigned short type;  htons(ether_type)
 struct net_device *dev;  NULL means all dev
 int (*func) (...);  handler address
 void *data;  private data
 struct list_head list;
};

There are two exported kernel functions for adding and removing handlers:
 void dev_add_pack(struct packet_type *pt)
 void dev_remove_pack(struct packet_type *pt)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 13

Addition of own handler

struct packet_type myproto;

myproto.type = htons(ETH_P_ALL);
myproto.func = myfunc;
myproto.dev = NULL;
myproto.data = NULL;

dev_add_pack (&myproto)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 14

Passive Covert Channels

© 2004, Joanna Rutkowska, http://invisiblethings.org. 15

TCP Header

source port destination port

sequence number (SEQ#)

ack number (ACK#)

P
S
H

R
S
T

S
Y
N

F
I
N window sizeData

offset

U
R
G

A
C
K

checksum urgent pointer

E
C
N

C
W
R

The SEQ#, which is transited first is called
Initial Sequence Number (ISN)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 16

TCP handshake

© 2004, Joanna Rutkowska, http://invisiblethings.org. 17

Idea of ISN based passive CC

Change ISN numbers in all (or only some) outgoing TCP
connections (on compromised host)

Make sure to change back the ACK numbers in incoming
connections, co kernel will not discard the packets

Also, change SEQ# in all consecutive packets belonging to
the same TCP connection

We can send 4 bytes per TCP connection this way.

Not much, but when considering lots of HTTP connections
made by ordinary users it should be ok for sending for e.g.
sniffed passwords, etc...

© 2004, Joanna Rutkowska, http://invisiblethings.org. 18

Passive TCP ISN covert channel idea

© 2004, Joanna Rutkowska, http://invisiblethings.org. 19

Tracing TCP connections

For each TCP connection a block of data is allocated (by a
CC kernel module):

struct conn_info {
 __u32 laddr, faddr;
 __u16 lport, fport;
 __u32 offset; // new_isn -
orig_isn

 struct list_head list;
};

It allows you to correctly change the SEQ numbers of all
incoming and outgoing TCP packets

© 2004, Joanna Rutkowska, http://invisiblethings.org. 20

Detecting end of connection

After the user close the connection it would be nice that
the CC module free the conn_info structure for that
connection (memory in kernel is a an important resource)

We can implement TCP state machine in CC module to
detect when the connection is actually closed (and we
don’t need to worry about changing its SEQ/ACK numbers
anymore)

but this is too much work;)
Another solution: look at the kernel tcphash_info,
which holds all information about live TCP connections

From time to time remove dead TCP connection info
(struct conn_info).

© 2004, Joanna Rutkowska, http://invisiblethings.org. 21

Adding Reliability Layer

Any communication channel without reliability
mechanism is not really useful outside lab

In ISN based CC we can exploit the nature of TCP
protocol: every SYN packet is acknowledged either by
SYN|ACK or by RST packet

All we need to do is to trace which packets were actually
acknowledged

We need to add packet ordering (our own sequence
numbers)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 22

Protocol

Note that receiver is
passive!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 23

Protocol Diagram

© 2004, Joanna Rutkowska, http://invisiblethings.org. 24

Protocol implementation: TCP ISN
field

of actual data bytes sent in this packet:
00: no data (control packet)
01: b0 is valid
10: b0 & b1 are valid
11: b0, b1 & b2 are valid

This is the 32bit
SEQ (or ACK) field
from TCP packet

© 2004, Joanna Rutkowska, http://invisiblethings.org. 25

Special packets

ISN_NEW_BLOCK
(starts new transmission black)

ISN_EMPTY
(when there is no data to send)

Special packets contain “random” bytes, to avoid
duplicated ISN numbers (which could easy betray the
covert channel). Remember that all ISN’s are encrypted
with a block cipher before sending to the wire.

© 2004, Joanna Rutkowska, http://invisiblethings.org. 26

ISN Encryption

Every ISN, generated by CC protocol engine, is encrypted
with a block cipher (see later)

Both sides share the common key

Probably the most important thing about the algorithm
used is how similar the characteristics of the "random“
numbers it generates are to the ISN numbers generated by
the Linux kernel.

The security of the cipher algorithm plays rather second
role here, since it seems unlikely that anybody will try to
break it;)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 27

ISN Encryption

ISN (SEQ) field is only 32 bit wide

Most good block cipher operates on blocks greater or equal
to 64 bits

Solution: Use DES to generate a “one-time-pad” key and
xor ISN with the lowest 32bits of the generated key.

We use TCP source and destination port and IP source and
destination address as a “seed” to generate key.

© 2004, Joanna Rutkowska, http://invisiblethings.org. 28

ISN Encryption

© 2004, Joanna Rutkowska, http://invisiblethings.org. 29

Encryption

NOTE: we can only use these elements to generate key,
since we need to assure that not only the receiver will be
able to decrypt it but also the sender, when decrypting the
ACK packet’s ACK#!

This is also the reason for XORing destination and source,
so we don’t need to worry about reversing them when
considering the ACK packet.

We need to be able to
decrypt this number
too!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 30

Nü Shu __

 Secret language of Chinese women
 Characters were often disguised as

decorative marks or as part of
artwork

 Existed for centuries, but was not
known to most of the world until
1983!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 31

NUSHU – TCP ISN based passive
Covert Channel

Features:

on-the-fly SEQ# changing

Reliability layer

PF_PACKET cheating

For Linux 2.4 kernels (see later discussion on 2.6 kernels)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 32

NUSHU Live Demo

Time to show some working code :)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 33

PART II

 Inquisitive PF_PACKETS
 Cheating local PF_PACKETs sniffers + DEMO
 “Reverse mode” & bidirectional channels
 Host based detection + DEMO
 Discussion of network based detection
 Some notes about hiding LKMS and LKMs in 2.6 kernels

© 2004, Joanna Rutkowska, http://invisiblethings.org. 34

Inquisitive PF_PACKET sockets

Q: If you try running tcpdump on a host compromised
with NUSHU, what will happen?

A: The outgoing packets will have the ISN displayed
correctly (i.e. the ISN inserted by CC). However, the
incoming TCP packets will have the ISN displayed
incorrectly (i.e. the ISN after the CC changed it)

Surprisingly, this behavior doesn’t depend on whether the
PF_PACKET socket (the tcpdump’s one) was loaded
before or after the CC module registered its handler!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 35

[SYN packet as seen on compromised host (172.16.100.2)]:

172.16.100.2.1092 > 172.16.100.1.888: SYN
4500 003c 03ac 4000 4006 16ec ac10 6402
ac10 6401 0444 0378 4242 4242 0000 0000
a002 16d0 7b99 0000 0204 05b4 0402 080a
0018 0921 0000 0000 0103 0300

[SYN|ACK packet, again, as seen on compromised host]:

172.16.100.1.888 > 172.16.100.2.1092: SYN|ACK
4500 003c 0000 4000 4006 1a98 ac10 6401
ac10 6402 0378 0444 1636 5a84 37bf 0a8e
a012 16a0 1e82 0000 0204 05b4 0402 080a
0017 2e9d 0018 0921 0103 0300

local tcpdump problem

ISN (SEQ#)

ACK# (should be: 0x43424242)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 36

skb_clone() vs skb_copy()

 Every ptype handler operates de facto on the same data
(skb->data is not copied during skb_clone()).

 If the CC’s ptype handler is called before
PF_PACKETS’s packet_rcv(), then tcpdump displays
the changed SEQ#.

 When the packet_rcv() is called first, the userland
process’ socket still gets the wrong data, since it effectively
reads the data (skb->data) after all the kernel stuff is
executed on this packet

dev_queue_xmit_nit (skb, ...) {
skb2 = skb_clone(skb);
(...)
ptype->func (skb2);

}

© 2004, Joanna Rutkowska, http://invisiblethings.org. 37

PF_PACKET Cheating idea

Redirect all ptype handlers calls, except CC’s one, through
additional function (cc_packet_rcv), which will copy
(not clone!) the skb buffer and call original handler.

To do this:
Traverse ptype_all list and replace all pt->func
to point to cc_packet_rcv()

hook dev_add_pack() to catch all future ptype
registrations

© 2004, Joanna Rutkowska, http://invisiblethings.org. 38

PF_PACKET cheating

int cc_packet_rcv (struct sk_buff skb, …) {

skb2 = skb_copy (skb);
if (incoming_packet and

orig_func != cc_func)

return orig_func (skb2, …);
else return orig_func (skb, …);

}

void cc_dev_add_pack (pt) {

pt->func = cc_packet_rcv;

pt->data  {orig_func, orig_data};

}

© 2004, Joanna Rutkowska, http://invisiblethings.org. 39

Live DEMO

 NUSHU + PF_PACKET cheating

© 2004, Joanna Rutkowska, http://invisiblethings.org. 40

Server mode (“reverse mode”)

This time covert channel is in
ACK# fields, not in #SEQ

© 2004, Joanna Rutkowska, http://invisiblethings.org. 41

Bidirectional channels

In this presentation we focused on information stealing,
rather then backdoor technology (thus unidirectional
channels)

NUSHU could pretty easily be extended to support
bidirectional transmission:

one direction: SYN packet’s ISN

opposite direction: SYN ACK packet’s ISN

© 2004, Joanna Rutkowska, http://invisiblethings.org. 42

Covert Channels Detection

Host Based Network Based

© 2004, Joanna Rutkowska, http://invisiblethings.org. 43

Detecting extra ptype handler
(host based detection)

invasive (requires a special module, which registers a
dummy ptype handler for a while)

noninvasive (does not require any kernel changes, can be
implemented through /dev/kmem)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 44

How to detect?

How to get a list of registered protocol handlers?

Author does not know any tool (or even kernel API) for
doing that!

We need to “manually” check the following lists:
ptype_all

ptype_base

But their addresses are not exported!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 45

Where are the protocol lists?

Two kernel global variables (net/core/dev.c):
static struct packet_type *ptype_base[16];
static struct packet_type *ptype_all = NULL;

Only the following functions are referencing those
variables (i.e. “know” their addresses):

1. dev_add_pack()

2. __dev_remove_pack()

3. dev_queue_xmit_nit()

4. netif_receive_skb()

5. net_dev_init()

1. dev_add_pack()

2. dev_remove_pack()

3. dev_queue_xmit_nit()

4. netif_receive_skb()

Kernel 2.6.7Kernel 2.4.20

The functions in green are exported.

© 2004, Joanna Rutkowska, http://invisiblethings.org. 46

Approaches for finding the lists
System.map file

problem: the file is not always up to date or sometimes
it does not even exist (for security reasons;))

“heuristic” method
We know the addresses of several functions which are
using the addresses we are looking for.
We can look at their body to find all the 32 bit words
which look like kernel pointers.
We then need to find the common set of those pointer-
like words from all functions we considered.
Finally we need to check every potential value from the
common subset to see if it looks like (or could be) the
ptype_all or ptype_base list head.

© 2004, Joanna Rutkowska, http://invisiblethings.org. 47

Illustration for the heuristic method

© 2004, Joanna Rutkowska, http://invisiblethings.org. 48

Live DEMO: detecting additional
protocol handlers

PTYPE_ALL:
hook type ETH_P_ALL (0x3)
hook at: 0xc487e060 [module: unknown module]

PTYPE_BASE[]:
hook type ETH_P_IP (0x800)
hook at: 0xc0203434 -> ip_rcv() [k_core]

hook type ETH_P_802_2 (0x4)
hook at: 0xc01f8050 [k_core]

hook type ETH_P_ARP (0x806)
hook at: 0xc0223778 -> arp_rcv() [k_core]

© 2004, Joanna Rutkowska, http://invisiblethings.org. 49

“Invasive” method
Write a little module, which adds its own (dummy) packet
type handlers:

So, you can now traverse the interesting list, starting from:
myproto.next

After reading all the handler addresses, you can simple
deregister the dummy protocol handler.

int dummy_handler (...) { return 0; }

myproto.type = ETH_P_ALL;

myproto.func = dummy_handler;

dev_add_pack (&myproto);

© 2004, Joanna Rutkowska, http://invisiblethings.org. 50

Notes about host-based detection

We mentioned only two possible ways of implementing
passive covert channels

ptype handlers
Netfilter hooks

These are the easiest (and probably most elegant)
But there are many other possible ways to create covert
channels in the Linux kernel, for example:

internal kernel function hooking (biggest problem: most
of them are not exported). Quite easy to detect.
function pointer hooking, like:

arp_*_ops.hh_output

net_device.poll
etc...

...hard to detect!

© 2004, Joanna Rutkowska, http://invisiblethings.org. 51

host-based backdoor and covert
channel detector

Properly implemented host-based compromise detector, should:

• Checks for hidden processes

• Checks for hidden sockets

• Checks ptype handlers (noninvasive method)

• Checks Netfilter hooks

• Checks integrity of kernel code (ala Tripwire)

• Checks important network code pointers

© 2004, Joanna Rutkowska, http://invisiblethings.org. 52

Network Based Detection

The characteristics of ISN numbers generated by NUSHU
will be different from the ISN generated by Linux Kernel.

We need a reliable method for fingerprinting PRNG

We have to save the correct PRNG (Linux kernel’s)
characteristics in a detector database

The detector measures the characteristics of the suspected
TCP flows and compares them against the stored
fingerprints (note: detector must be told which exact OSs
are running in the network)

Writing a network based covert channel detector is on my
TODO list ;)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 53

Notes about stealth modules

load module as usual (insmod)

in init_module():

allocate some memory by kalloc()

do not use vmalloc(), since such memory goes
beyond (phys_mem + VMALLOC_START), which
makes it easy to detect

copy all code and global data to allocated buffer

relocate code
remove module (rmmod)

NOTE: /dev/kmem cannot be used on for example
Fedora Core 2&3 systems.

© 2004, Joanna Rutkowska, http://invisiblethings.org. 54

Linux 2.6 Considerations

Changed module loading scheme:
http://lwn.net/Articles/driver-
porting/

There is no compatibility at binary level for modules
anymore (no MODVERSIONS)! :-o
Each module needs to be recompiled for the exact kernel
version

You can expect some strange incompatibility issues,
like different structure layouts between one minor
kernel version to another (for example struct
module has been changed in 2.6.6, breaking all binary
compatibility)

Besides that, seems to be no important differences which
would make the implementation difficult

© 2004, Joanna Rutkowska, http://invisiblethings.org. 55

Linux 2.6 LKM hell

 Special macro, VERMAGIC_STRING, has been added to
allow checking if the module matches the kernel

 When trying to load test.ko module built for Fedora Core 2
on a Slackware 10 system we get the following error (vermagic
mismatch):

test: version magic '2.6.5-1.358 686
REGPARM 4KSTACKS gcc-3.3' should be
'2.6.7 486 gcc-3.3'

 We see a calling convention mismatch and different stack sizes.
Loading such module will probably crash the system

© 2004, Joanna Rutkowska, http://invisiblethings.org. 56

VERMAGIC_STRING
include/linux/vermagic.h:
#define VERMAGIC_STRING \

UTS_RELEASE " " \ // e.g: “2.6.5-1.358”
MODULE_VERMAGIC_SMP \ // “SMP” or “”
MODULE_VERMAGIC_PREEMPT \ // “preempt” or “”
MODULE_ARCH_VERMAGIC \ // see below
"gcc-" __stringify(__GNUC__) ".“ \
__stringify(__GNUC_MINOR__) // “gcc-3.3”

include/asm-i386/module.h:
#define MODULE_ARCH_VERMAGIC \

MODULE_PROC_FAMILY \ // e.g.“PENTIUM4”
MODULE_REGPARM \ // “REGPARM” or “”
MODULE_STACKSIZE // “4KSTACKS” or “”

© 2004, Joanna Rutkowska, http://invisiblethings.org. 57

Future work

Windows port

Bidirectional channel

Network based detector (statistical analysis, PRNG
fingerprinting)

Different courier then TCP ISN (HTTP Cookie?)

© 2004, Joanna Rutkowska, http://invisiblethings.org. 58

Credits & Greets

All members of the #convers channel

Ian Melven

Paul Wouters

JG

