OpenBGPD and OpenNTPD

Henning Brauer <henning@openbsd.org>

BGP - The Protocol

Border Gateway Protocol, RFC 1771

ISPs talk BGP to each other to announce reachability
of their networks

Networks are subsummarized into Autonomous
Systems (AS)

One ISP is typically one AS

BGP - The Protocol

Network reachability is announced with so-called
AS-Pathes, describing the path to the final network
through intermediate ASes

A BGP speaker usually announces directly connected
networks, and prefixes with their pathes it learned
from its neighbors

An AS Path looks like "13237 174 3602 22512"
listing the AS numbers we cross on the way to the
destination, in this case, cvs.openbsd.org

BGP - Messages

OPEN

e Sent once at establishment of the tcp session. contains
parameters such as the AS number.

KEEPALIVE

e Sent periodically to test wether the session is still alive.

UPDATE
e These messages carry the actual routing information.

NOTIFICATION

e Sent on fatal errors. After sending a notification the session is
reset.

BGP - Existing Implementations

Zebra: GPL, makes heavy use of cooperative threads.
Suffers from losing sessions while busy.
Documentation and error messages in japanese or
missing. Commercialized, thus mostly dead since
about 2 years.

Quagga: frustrated zebra users try to fix the worst
bugs

gated: became unfree, then died. Nothing really
usable left.

BGP - Existing Implementations

Cisco: proprietary, only works on their overpriced
routers. Usually works ok, unless you happen to hit
one of its countless bugs, or the tiny CPUs they use
are swamped with work.

Juniper's JunOS: apparently works ok, but not free
either.

bgpd - Design Prerequisites

Security. Code careful, use bounded buffer
operations, and account for own failure by using
privilege separation.

Don't lose sessions. There should be a fairly
independent session engine.

Performance and memory efficiency, of course.

Well designed config and filter language.

bgpd - Design

3 processes

e Session Engine (SE): manages bgp sessions

e Route Decision Engine (RDE): holds the bgp tables, takes routing
decisions

e Parent: enters routes into the kernel, starts SE and RDE

SEss10n engine

bgp client
connections

bgpd socketpair jailed child socket e
master fvar/fempty TCP *:179 1 & oul

config InfQ mgp
_bgpd:_bgpd

rool

fork

Jred)ayd0s

< sojepdn
e SJUIAD UOISSIS

socketpair route decision engine

config info =g
jailed child
/var/empty

_bgpd:bgpd

<= nexthop validation

<= feceding routes

ipsec/tcpmdd
key management

kernel routing
table adjustment

bgpd - Design

Obviously, the Session Engine needs to be

nonblocking, and use nonblocking sockets.
e We need to handle all buffering ourselves.

Invent an easy to use Buffer APT

For the internal messaging, invent an "imsg" API as

well.

e internal messaging is a core component in privilege separation
e 44 message types now

bgpd - Session Engine

Maintains a listening tcp socket
Opens tcp connections to neighbors

Negotiates parameters with neighbors via OPEN
messages

Once a session is established, it sends KEEPALIVE
messages regularly, and receives ones from the
neighbors

bgpd - Session Engine

Finite State Machine for each neighbor

UPDATES received from a neighbor are passed to the
RDE.

Outgoing UPDATES are generated in the RDE and the
SE just relays them.

bgpd - Session Engine

Maintains a Unix-Domain socket for the bgpctl
program

very lightweight: typically under 1 MB RAM on i386

runs as unprivileged user _bgpd, chroots to
/var/empty

bgpd - Route Decision Engine

Maintains the Routing Information Base (RIB)

e prefix table
e AS path table

BGP Filters run here
Calculates the best path per prefix

Generates UPDATE messages as needed

bgpd - Route Decision Engine

RIB Layout

e Split into many tables
e Heavily linked
® Avoid table walks

UPDATE messages are processed to completion

Generated UPDATESs are queued to use piggy-back
optimization

RIB Table and sessions can be dumped to mrt files

bgpd - Route Decision Engine

Memory efficent

e 1 full view needs around 20 MB
e 2 full views need around 25 MB

Fast

® Around 10s to load a full view on a PIIT 1G6Hz
e Less than 5s to dump a full view to another router

Runs as unprivileged user _bgpd, chroots to
/var/empty

bgpd - Parent process, kernel interface

Responsible for getting the routes into the kernel
Does nexthop validation for the RDE
Maintains its own copy of the kernel routing table

Fetches the kernel routing table and interface list on
startup

bgpd - Parent process, kernel interface

Listens to the routing socket

e Internal view of the kernel routing table is held in sync
» If you fiddle with the routing table manually, we notice that and cope with it

e Internal list of interfaces and their status is kept in sync

» We know about interfaces’ link status and use it for nexthop verification
» Yes, we notice when you pull the cable!

We don't need periodic nexthop table walks

bgpd - Parent process, kernel interface

The internal view of the routing table can be coupled

and decoupled from the kernel

e Damn fast! With a full table (about 150000 entries), less than 3
seconds on a PIII 750.

Needs about 5 MB in full-mesh configurations

bgpd - tcp mdb signatures

bgp sessions are not really authenticated - just IP
based access control

An attacker could send a bgp notification message
with a faked source address, resetting the
connection -> DoS

bgpd - tcp mdb signatures

RFC 2385 defines tcp md5 signatures

An md5 hash of parts of the header and a shared

secret is added to the tcp header and verified on the

receiving side

e (unless you happen to run FreeBSD, they don't bother verifying
the signatures)

Attacker has to know the shared secret

bgpd - tcp mdb signatures

Very old code for tcp md5 signatures existed, but
didn't work. We used it as starting point.

We implemented tcp md5 signatures as Security
Association within the IPsec framework

bgpd got a pfkey interface to interact with the
IPsec framework

tcp mdbsig is extremly easy to configure, works with
ciscos and junipers, too: USE IT!

bgpd - tcp mdb signatures

Keep in mind that tcp md5 sigs are rather weak
Take care for the key length - use at least 12 bytes

Make sure to read RFC 3562, "Key Management
Considerations for the TCP MD5 Signature Option"

bgpd - ipsec integration

As we had the pfkey interface already, it was not too

hard to do real IPsec

e bgpd loads the SAs into the kernel
e bgpd sets up the flows

Juniper can do static-keyed IPsec as well, we're
compatible.

Cisco cannot, of course
e (could cause CPU load after alll)

bgpd - ipsec integration

We can use isakmpd to do the keying for us
e keys are changed on a regular basis

bgpd asks the kernel for an unused pair of SPIs and
uses them

bgpd sets up the flows

e it knows the endpoints and ports already

isakmpd only needs to handle the keying

e almost NO configuration needed!
e copy key files (generated at first boot on OpenBSD 3.6) over
e run "isakmpd -Ka"

bgpd - pf integration

The BGP protocol is an efficient way to distribute
lists of network prefixes, so we integrated bgpd with
our pf packet filter

bgpd can add prefixes learned from neighbors into a
pf table

e prefixes are selected using the bgpd filter language
e tables use a radix tree, very fast even with lots of entries

pf tables can be used for pretty much anything:
e packet filtering

e redirection to spamd (BGP distributed spam blacklists)

e QoS processing

bgpd - carp integration

The Common Address Redundancy Protocol allows two

hosts to share an IP address in a master-backup

scenario
e kinda VRRP unencumbered, but better

Typical case: Exchange Points. You get one IP in the

IX-network.

e What about using Two machines and CARP
» works without special support from bgpd, but we can do better

bgpd - carp integration

Make bgpd aware of the CARP master/backup state

e this is actually the link state for the carp interface

For sessions depending on the carp interface, keep

them in state IDLE as long as the carp interface is
not master.

The very same moment the carp interface gets
master, all sessions depending on it go to Connect (or

Active for passive sessions)
® much faster failover

bgpd - configuration

Split into 5 sections

e Macro definitions - just like in pf
e Global settings

® Networks to announce

e Neighbor definitions

e Filter

bgpd - macros, global config, networks

#macros

peer1="10.0.0.2"
peer2="10.0.0.3"
myip="127.0.0.1"

global configuration
AS 65001

router-id $myip

listen on $myip
holdtime 180

holdtime min 3
fib-update no

networks we announce
network 10/8
network 192.168.2/23

bgpd - neighbor definition

neighbor 10.0.1.0 {

remote-as 65003
descr upstream
multihop 2
local-address 10.0.0.8
passive

holdtime 180
holdtime min 3
announce self

tcp mdSsig key deadbeef
}

Very cool: the annnounce keyword

e none: don't announce any networks

e self: announce only our own networks

e all: announce everything we know

e default-route: announce a default-route and nothing else

On cisco/zebra you need filters for this

bgpd - neighbor groups

group “'peering AS65002" {

remote-as 65002
passive

holdtime 180
holdtime min 3

neighbor $peerl {
descr "AS 65001 peer 1"
announce self
tcp md5sig password mekmitasdigoat

}

neighbor $peer2 {
descr "AS 65001 peer 2"
announce all

h

bgpd - ipsec configuration, static keying

neighbor 10.2.1.1 {

remote-as 65023

local-address 10.0.0.8

ipsec esp in spi 10 \
shal Qad4fldiflalc4f3c9e2f6f0f2a8e9c8c5alb0Ob3b \
aes 0Oclb3a6c7d7a8d2e0e7b4f3d5e8ebcle

ipsec esp out spi 12 \
shal 0e9c8f6aBe2c7d3alb5d0d0f0a3c5c1d2b8e0f8b \
aes 4e0f2f1b5c4e3c0d0e2f2d3b8c5c8f0b

bgpd - ipsec configuration, using IKE

neighbor 10.2.1.1 {
remote-as 65023
local-address 10.0.0.8
ipsec esp ike

}

neighbor 10.2.1.2 {
remote-as 65024
local-address 10.0.0.8
ipsec ah ike

filter language

filter out prefixes longer than 24 or shorter than 8 bits
deny from any
allow from any prefixlen 8 - 24

do not accept a default route
deny from any prefix 0.0.0.0/0

filter bogus networks

deny from any prefix 10.0.0.0/8 prefixlen >= 8

deny from any prefix 172.16.0.0/12 prefixlen >= 12

deny from any prefix { 192.168.0.0/16 169.254.0.0/16 } \
prefixlen >= 16

deny from any prefix 192.0.2.0/24 prefixlen >= 24

deny from any prefix { 224.0.0.0/4 240.0.0.0/4 } prefixlen >= 4

bgpctl

Client connecting to bgpd via unix domain socket
e query runtime information

e reload configuration

e (de-)couple kernel routing table

e take specific sessions up/down

bgpctl

<henning@crll>

Neighbor
carrier66
christiansen
otto
inetbone
Headlight
ISC
Artfiles
TNG
wizard.de
MCS Cityline
smartnet
lynet
OMCnet
freenet
crew-kg
shlink.de
ppp.net
n@work
cogent
lambdanet
cr3l

$ bgpctl show summary

AS
24953
34181
16378
25074
6666
8805
8893
13101
12923
5521
12485
12822
15388
5430
13135
12518
8687
9211
13129
13237
64514

MsgRcvd

118199
114091
178676
187600
178743
157643
192658
179100
178179
178620
0
178664
178661
178901
179963
178667
175794
178727
6092047
23202463
178624

MsgSent

115193
114064
178657
178679
178665
157616
177125
178670
178180
178601

0
178662
178665
178670
179793
178661
175716
178615
178616
178669
178669

OutQ

o an [e Y e B e Y e Y e B o o i S i Y e Y i o e Y e Y e Y e s Y s Y e e

Up/Down
01:14:05
23:14:16
0lwldl1lh
07wdd14h
07w5d11h
07wd4d20h
07w5d11h
07w5d11h
4d01h06m
06w5d11h
Never
01w3d05h
07wdd20h
02w3d21h
04w5d05h
07w5d11h
07w5d11h
04w5d21h
03w6d09h
08w6d00h
08w6d00h

State/PrefixRcvd

17/50
1/50
1/5

167/200

15/30

1/5

6/20

14/70

1/26

6/20
Active

2/5

1/5

18/50

6/20

6/20

10/20

11/25

151910

152857

0

bgpd - status quo

Very stable

In use at quite some sites, including setups with many
many many many many many many many many peers.
e Quite some operators mail me, expressing that they are very

happy with bgpd's performance, reliability and ease of use
» That makes me happy ;)

Some statistics...

e bgpd: 17744 lines of code
e bgpctl: 1384 lines of code
e manpages: 2611 lines

bgpd - evil future plans

Give pf access to some more information from bgpd

allow for freetext labels attached to a route

e 32 bytes we can use to attach arbitary information
e implemented in route(8) and the kernel routing table, as well as in

pf.
e bgpd can't set it - will be there soonish...

This is really evil:

pass in from route DTAG queue reallyslow keep state

OpenNTPD - Design Goals

security

e very tight validity checks in the network input path

e all buffer operations bounded and/or properly guarded
e privilege separation

ease of use

e lean implementation, sufficient for a majority
*» no overloaded feature monster

e should "just work" in the background

e should reach reasonable accuracy
» we're not after the last microseconds

e should only require a minimum of configuration

performance, of course!

NTP - The Protocol

Some much too chatty RFC about it (1305)
The protocol itself is dead simple

The math to do is harder - but it turned out the RFC
describes an overdone implementation, accounting for
an accuracy you'll never see on a typical Unix

system's clock
e suprised, anyone?

far more than 100 pages...

NTP - The Protocol

On-the-wire format is really dead simple.

64 bit timestamps: 32 bit integer part, 32 bit
fraction

32 bit timestamps (16 bit int, 16 bit fraction) for
informational stuff

The Protocol

struct ntp_msg {

u_int8_t
u_int8_t
u_int8_t

int8_t

struct s_fixedpt
struct s_fixedpt
u_int32_t

struct 1_fixedpt
struct 1_fixedpt
struct 1_fixedpt
struct 1_fixedpt
u_int32_t
u_int8_t

~—
e

status; incl. leap info */
stratum;

ppoll;

precision;

rootdelay;

dispersion;

refid;

reftime;

orgtime;

rectime:;

xmttime;

keyid;
digest[NTP_DIGESTSIZE];

The Protocol: Timestamps

4 really important ones

Timestamp Name ID When Generated

Originate Timestamp T1 time request sent by client
Receive Timestamp T2 time request received by server
Transmit Timestamp T3 time reply sent by server

Destination Timestamp T4 time reply received by client

Local clock of fset is now easy to calculate

t = ((T2 - T1) + (T3 - T4)) / 2

Implementation: Privilege Separation

Two processes
e parent, runs as root
e ntp engine, runs as _ntp:_ntp and chroots to /var/empty

socketpair in between
e use the buffer- and imsg-framework I wrote for bgpd

three message types: IMSG_ADJ TIME,
IMSG_SETTIME, and IMSG_HOST_DNS

Implementation: Privilege Separation

ntpd is a very good example for privilege separation
it is simple enough to be understood easily

the message types show the two common reasons we
need to privilege separate for (instead of just
dropping privileges)

Implementation: Privilege Separation

IMSG_ADJTIME: ntp engine asks the parent to do
the adjtime() call

e requires root

same IMSG_SETTIME, calls settime()

IMSG_HOST_DNS: ntp engine asks the parent to

resolve hostnames
e requires access to /etc/resolv.conf, YP maps, and whatnot

Implementation: Privilege Separation

very important: very very very strict validity checks
upon receival of the messages - the unprivileged
client is untrusted

if something is wrong with a message from the
unprivilged process, fail immediately and hard - exit,
without ever talking to the client again

Implementation: Server side

very easy

e recvfrom(2)

e decode request
e gettimeofday(2)
e build reply

e sendmsg(2)

oups, not that easy... we might reply with the wrong

src address

e many implementations will refuse our answer

e listen on each individual IP, so we know which IP the request was
sent to and can use that as src address when replying

e use getifaddrs(3) to get the IPs

» not available on Solaris, so there people have to specify the addresses to listen on manually
« until Sun gets a clue at least

Implementation: Client side

bit harder

e send queries to all peers

e little state engine so we don't wait forever for replies

e on receival of the replies, calculate offsets and such

e collapse the offsets learned from each peer into a single offset
and call adjtime()

Unfortunately, it's a little more complicated...

Implementation: Client side

to increase accuracy, we need to filter the replies we
get
e "clock filter", implementing an algorithm by David Mills

e basically, from 8 replies received from a peer, use the one with
the lowest delay, and invalidate all older replies

bad network connection results in poor accuracy

e punish peers with bad network connection - currently only based
on packet loss

e once punished, a peer needs to get a humber of replies to us that
we consider good before the peer is marked valid again and
affects the total offset calculation

Implementation: Client side

in the query, we set the "transmit timestamp" to a
random 64-bit cookie, and store both our cookie and
the real transmit timestamp locally

servers are required to copy that timestamp
verbatim into the "originate timestamp" in the reply

upon receival of the reply, we check that the
originate tfimestamp matches the cookie

It is a really cool hack, extending NTP security
without any drawbacks

Implementation: Falsetickers

What if some server deliberately sends us wrong
time?

there is an incredibly complicated falsetickers
detection in the ntp.org implementation

it can of course only work with a reasonable big set
of servers
e if you only query 2, no way to detect a falseticker

Implementation: Falsetickers

we can filter away falstickers much simpler
after the clock filter we have one reply per server

to get the local clock offset, we take the median
offset from all replies - not the average

Implementation: Falsetickers

Lets look at median.

basically, you order all offsets by value, and take the
middle one.

12
14
1024

average: (12 + 14 + 1024) / 3 = ~350
median: 14

Implementation: cope with big offsets
at startup

If the local clock is waaaaayyy off at startup,
adjtime() will need ages to cope with that

usually this is coped with by running something
before ntpd startup that sets the clock hard at boot

OpenNTPD 3.6.1 can do that itself. No second thing

to configure.

e -s command line switch for that, added unconditionally by our rc
scripts

® -S to override -s

Getting started, howto style

sync your OpenBSD 3.6 box's clock to a set of
random public timeservers

echo 'ntpd_flags="""' >> /etc/rc.conf.local

reboot

ntpd

that's it.

Configuration

$0penBSD: ntpd.conf,v 1.7 2004/07/20 17:38:35 henning Exp $
sample ntpd configuration file, see ntpd.conf(5)

Addresses to listen on (ntpd does not listen by default)

wfa

#listen on *

sync to a single server
#server ntp.example.org

use a random selection of 8 public stratum 2 servers
see http://twiki.ntp.org/bin/view/Servers/NTPPoolServers
servers pool.ntp.org

Configuration

listen on: tell ntpd to listen on a specific IP or all IPs

® [isten on *
® listen on 127.0.0.1
e can occur multiple times

server: sync to a single server
e if given as hostname that resolves to more than one IP, use the

first one. If we don't get a reply from that, pick the next one and
retry

servers: sync to a set of servers (pool.ntp.org)
e if given as hostname that resolves to n IPs, treat as if n "server
$ip" statements were given

status quo

3000 lines of code, with only a tiny fraction running
as root

accuracy typically around 50ms

e good enough for most uses - this is the system clock's accuracy
limiting us...

performance is very good

everybody loves how easy to use it is ;)

future ideas and ongoing work

permanent tick frequency adjustment
e needs kernel support

better filtering
e detect outliers and punish peers omitting those

maybe support GPS clocks and such

Thanks

Claudio Jeker <claudio@openbsd.org> and Andre
Oppermann <andre@freebsd.org> for working on bgpd
with me

Alexander Guy who worked on ntpd with me in the
early days

Theo de Raadt for kicking my lazy butt, lots of
design help and many many many McNally's we had
while discussing bgpd and ntpd

Wim Vandeputte, for his continued support and beer
supply

e (don't ask him about the hotel minibar please)

The unavoidable last page, 2004 edition

We have cool shirts and posters for sale outside, as
well as OpenBSD CDs

Money is running out, donations can be made at
http://www.openbsd.org/donations.html or outside at
our booth

Beer donations for the hackers are always welcomel!

