
Growing	Up
Software	Development

Michael	Sperber
@sperbsen

All	Grown	Up	Now

• graduated	U	Tübingen	1994
• PhD	2001
• wrote	some	books
• freelance	developer	2003-2010
• now:	CEO,	Active	Group	GmbH
• software	from
social	pedagogy	to
semiconductor	fabrication

1983

1986

1988

Me,	Teaching

• AP	Computer	Science	1987/1988
Radford	High	School
• Intro	Programming	for	CS	Students	1999-2011
University	of	Tübingen
• Intro	Programming	for	Humanities	Majors	1997-1999
• Training	for	Active	Group	2012-
• (coworkers,	friends,	children)

Steven	Levy:
Hackers	-
Heroes	of	the	Computer	Revolution,
Dell	Publishing,	1984,	1994.

The former "Captain Crunch" was in a bad way. Apparently certain authorities had
objected to his willingness to share phone company secrets with anyone who
bothered to ask; FBI agents trailed him and, according to his accounts of the
incident, planted an informer who talked him into a blue-box escapade while
agents waited to bust him. For this second conviction, he was sentenced to a brief
jail term, and incarceration did not agree with the normally contentious Captain, a
person taken to screaming like a six-foot-tall hyena if someone lit a cigarette
twenty feet away from him. After his release, he needed legitimate work badly,
and Woz got him hired as a consultant, designing a telephone interface board,
something that would plug into one of the Apple's expansion slots to allow you to
connect the phone to your computer.

Draper happily worked on the board. The people at Apple were amused by his
programming style, which alternated bursts of brilliance with bizarre pedantic
detours. Draper was a "defensive" programmer. Chris Espinosa, who had the
unenviable task of trying to keep an eye on the unpredictable Captain, would later
explain: "Say you're writing a program and you discover you've done something
wrong, like every time you try to use the program, a button pops up. Most
programmers go in, analyze their program, find out what causes the button to pop
up and cure it so it doesn't do that. Draper would go in and code around the button
so when the bug occurs, the program knows it's made an error and fixes it, rather
than avoiding the error in the first place. The joke is, if Draper were writing math
routines for addition and he came up with the answer 2 + 2 = 5, he would put a
clause in the program, if 2 + 2 = 5, then that answer is 4. That's generally the way
he writes programs."

But while the hackers at Apple were amused that the strange style of John Draper
was turning out a featureful product, the people in charge of the business end of
Apple got wind of the capabilities of Draper's design. They did not like it. Apple
was not a showcase for tricks; this was not Homebrew. And John Draper's board
could do some considerably neat tricks; not only did it interface with the phone,
but it generated official phone company tones it was a computer-driven blue box.
What Stew Nelson had done with the PDP-1 over a decade ago could now be done
in the home. The hacker instinct would have been to explore the capabilities oi this
hardware, which would enable you to explore systems all over the world. But
though Apple felt it could benefit by the Hacker Ethic in distributing information
about the innards of the machine, and distributing its computers as complete
systems to explore, it was not in the business of promoting pure hackerism. It was,
after all, a business, with a line of credit and a truckload of venture capital
provided by men in three-piece suits who did not relate to concepts like phone
hacking. "When Mike Scott discovered what [Draper's board] could do," Espinosa
later said, "he axed the project instantly. It was much too dangerous to put out in
the world for anybody to have."

1985

http://heartbleed.com/

HeartBleed

CloudBleed

1986

2017

start-coding.de

2017

2017

Teaching	is	Easy...

≠

Teaching	by	Example 2
B U I L D A

H I - L O G U E S S I N G G A M E A P P !

Let’s begin by coding a fun, playable
game in Java: the Hi-Lo guessing game.

We’ll program this game as a command line
application, which is just a fancy way of saying

it’s text based (see Figure 2-1). When the program
runs, the prompt will ask the user to guess a number
between 1 and 100. Each time they guess, the pro-
gram will tell them whether the guess is too high,
too low, or correct.

2017

Teaching	by	Example

Build a Hi-Lo Guessing Game App! 21

user to guess again as long as their guess isn’t equal to the secret number
theNumber. When the user’s guess is equal to the secret number, the user wins
and the game is over, so the loop should stop.

To create a while loop, we need to insert a while statement before the
last three lines of code and then wrap the three lines for guessing inside a
new pair of braces, as follows:

 int guess = 0;
 while(guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }
 }
}

We use the keyword while to let Java know we’re building a while loop,
and then we put the appropriate condition inside parentheses. The part
inside the parentheses, guess != theNumber, means that while the value
stored in guess is not equal to (!=) the value stored in theNumber, the loop
should repeat whatever statement or set of statements immediately follow
this line of code. The operator != is a comparison operator—in this case, it
compares guess and theNumber and evaluates whether they’re different, or
not equal. You’ll learn about other comparison operators in the next sec-
tion, but this is the one we need for the guessing while loop.

We need to tell Java what statements to repeat in the while loop, so
I’ve added an opening brace, {, on the line after the while statement. In
the same way that braces group all the statements together in the main()
method, these braces group statements together inside the while loop.

There are three statements that we want to include inside the loop. First
we need the println() statement that prompts the user to guess a number.
Then we need the statement that scans the keyboard and records the guess
with the nextInt() method. Finally, we need the println() statement that tells
the user what they entered. To turn this set of statements into a block of
code that will be run repeatedly in the while statement, we write the while
statement and condition first, then an opening brace, then all three state-
ments, and finally, a closing brace. Don’t forget the closing brace! Your pro-
gram won’t run if it’s missing.

One good programming practice that will help you keep your code
organized and readable is using tab spacing correctly. Highlight the three
statements inside the braces for the while statement and then press the TAB
key to indent them.

The result should look like the following code:

 int guess = 0;
 while(guess != theNumber)
 {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();

1987

Bertrand	Meyer:
OO	Software	Construction,
2nd	edition,	1997

Systematic	Methods

DESIGN
RECIPES

Armadillo

has	following	properties:
• alive	or	dead
• weight COMPOUND

DATA

DrRacket

Examples

(define d1 (make-dillo #t 10))
; armadillo, alive, 10kg

(define d2 (make-dillo #f 12))
; armadillo, dead, 12kg

Signatures

(: make-dillo (boolean number -> dillo))
(: dillo-alive? (dillo -> boolean))
(: dillo-weight (dillo -> number))

Life	on	the	Texas	Highway

; run over an armadillo
(: run-over-dillo (dillo -> dillo))

(check-expect (run-over-dillo d1)
(make-dillo #f 10))

(check-expect (run-over-dillo d2)
(make-dillo #f 12))

(define run-over-dillo
(lambda (d)

...))

Template

(: run-over-dillo (dillo -> dillo))

(define run-over-dillo
(lambda (d)
(make-dillo)
... (dillo-alive? d) ...
... (dillo-weight d) ...)))

Definition

(define run-over-dillo
(lambda (d)

(make-dillo #f
(dillo-weight d))))

Rattlesnakes

; A rattlesnake has the following properties:
; - thickness
; - length
(define-record-procedures rattlesnake

make-rattlesnake
rattlesnake?
(rattlesnake-thickness
rattlesnake-length))

(: make-rattlesnake (number number -> rattlesnake))
(: rattlesnake-thickness (rattlesnake -> number))
(: rattlesnake-length (rattlesnake -> number))

Life	on	the	Texas	Highway

; run over a rattlesnake
(: run-over-rattlesnake

(rattlesnake -> rattlesnake))

(check-expect (run-over-rattlesnake r1)
(make-rattlesnake 0 150))

(check-expect (run-over-rattlesnake r2)
(make-rattlesnake 0 200))

Diverse	Life	on	the	Texas	Highway

An	animal	is	one	of	the	following:
• armadillo
• rattlesnake MIXED

DATA

Diverse	Life	on	the	Texas	Highway

(define animal
(signature
(mixed
dillo
rattlesnake)))

...	and	its	End

; run over an animal
(: run-over-animal (animal -> animal))

(check-expect (run-over-animal d1)
(make-dillo #f 10))

(check-expect (run-over-animal r1)
(make-rattlesnake 0 150))

Function	Accepting	Mixed	Data

(define run-over-animal
(lambda (a)
(cond

((dillo? a)
...)

((rattlesnake? a)
...))))

Function	Accepting	Mixed	Data

(define run-over-animal
(lambda (a)
(cond

((dillo? a)
(run-over-dillo a))
((rattlesnake? a)
(run-over-rattlesnake a)))))

Teaching observe
improve
repeat

arbitrary
starting	point

Program	by	Design

• Design	Recipes
• Programming	Language(s)	designed	for	learners
• Programming	Environment	designed	for	learners

Progression

• safe	languages	/	runtimes
• functional	languages
• systematic	programming
• type-driven	programming
• type-assisted	programming

