
avatar2

Marius Muench

34c3 - December 29, 2017



Contents

1. Binary firmware analysis

2. Tooling landscape

3. The avatar2 framework

4. Examples

5. Conclusion

1



Binary Firmware Analysis



Motivation

• Amount of embedded devices steadily increasing

• Misconfigurations, bugs, and vulnerabilities are common

• A lot of reported vulnerabilities are ”low-hanging fruits”

• Discovery of more complex bugs benefits from sophisticated

tooling

2



Major Challenges

• Variety of platforms

• Memory layout

• Peripherals

• Often no OS-level abstractions

• Many devices use monolithic firmware

• Hardware interactions are embedded in firmware code

• Memory Mapped I/O

• Interrupts

• Variety of architectures

3



https://en.wikipedia.org/wiki/List of ARM microarchitectures#Designed by ARM

3



Further Challenges

• Instrumentation

• Emulation

• Fault detection

• Interrupt handling

• Microarchitecture dependent instructions

4



Tooling Landscape



Binary Analysis Tools for Firmware

• A lot of binary analysis tools for desktop software

• Way less for embedded devices software

• Especially when considering open source tools

• Often, challenges for embedded devices exceed capabilities of
static analysis tools

• Assumuption about environment may not hold true

• Difficult to infer peripheral behaviour and interrupts

5



FiE

• Based on KLEE

• Targets MSP430 firmware

• Symbolic Execution

• Uses explicit analysis, memory and interrupt specifications

• Requires source code of firmware

Davidson, Drew, et al. ”FIE on Firmware: Finding Vulnerabilities in Embedded

Systems Using Symbolic Execution.” USENIX Security Symposium 2013.

6



FiE

• Based on KLEE

• Targets MSP430 firmware

• Symbolic Execution

• Uses explicit analysis, memory and interrupt specifications

• Requires source code of firmware

Davidson, Drew, et al. ”FIE on Firmware: Finding Vulnerabilities in Embedded

Systems Using Symbolic Execution.” USENIX Security Symposium 2013.

6



Firmadyne

• Based on Qemu

• Targets ARM & MIPS firmware

• Instrumented Linux kernel

• Automated analysis of web pages and SNMP implementations

• Automated testing with known exploits

• Works only for Linux based firmware with no too specific

kernel modules

Chen, Daming D., et al. ”Towards Automated Dynamic Analysis for Linux-based

Embedded Firmware.” NDSS 2016.

7



Firmadyne

• Based on Qemu

• Targets ARM & MIPS firmware

• Instrumented Linux kernel

• Automated analysis of web pages and SNMP implementations

• Automated testing with known exploits

• Works only for Linux based firmware with no too specific

kernel modules

Chen, Daming D., et al. ”Towards Automated Dynamic Analysis for Linux-based

Embedded Firmware.” NDSS 2016.

7



LuaQemu

• Based on instrumented QEMU

• Work in progress

• Example targets BCM4358 firmware

• Prototyping of Boards with LUA

• Instrumentation capabilities

• Requires a significant amount of modeling and trial & error

https://github.com/Comsecuris/luaqemu

8



LuaQemu

• Based on instrumented QEMU

• Work in progress

• Example targets BCM4358 firmware

• Prototyping of Boards with LUA

• Instrumentation capabilities

• Requires a significant amount of modeling and trial & error

https://github.com/Comsecuris/luaqemu

8



Avatar

• Based on S2E (QEMU+KLEE) and OpenOCD/GDB

• Targets ARM firmware

• Partial emulation together with real hardware

• I/O forwarding

• Orchestration

• Symbolic Execution

• Heavily tied to the S2E infrastructure

• Requires the presence of the physical device

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis

of Embedded Systems’ Firmwares.” NDSS 2014.

9



Avatar

• Based on S2E (QEMU+KLEE) and OpenOCD/GDB

• Targets ARM firmware

• Partial emulation together with real hardware

• I/O forwarding

• Orchestration

• Symbolic Execution

• Heavily tied to the S2E infrastructure

• Requires the presence of the physical device

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis

of Embedded Systems’ Firmwares.” NDSS 2014.

9



Observations

• A lot of focus on ARM

• QEMU’s emulation capabilities are a common building block

• Frameworks are heavily bound to underlying components

10



The avatar2 framework



The big picture

• Dynamic Multi-Target Orchestration and Instrumentation

Framework

• Focus on firmware analysis

• Python based framework

• Re-designed and re-implemented from scratch

• Open source: https://github.com/avatartwo

• Research project

• Released in June 2017

11



Who?

• Developed by the Software and System Security Group at

Eurecom

• Specifically:

• Marius Muench

• Dario Nisi

• Aurélien Francillon

• Davide Balzarotti

http://s3.eurecom.fr/

12



main goals

• Target orchestration

• Abstraction of debuggers, emulators and other frameworks

• Easy addition of new targets

• Separation of execution and memory

• Enables I/O forwarding/remote memory

• State transfer and synchronization

• Don’t keep the state of analysed software local to single targets

13



avatar2- components

• avatar2 core

• Targets

• Endpoints

• Protocols

14



avatar2- architecture overview

Avatar2

Target0

Execution
Protocol

Memory
Protocol

Endpoint0

Register
Protocol

Targetn

Execution
Protocol

Memory
Protocol

Endpointn

Register
Protocol

. . .

. . .

. . .

15



Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development

16



Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development

16



Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development

16



Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development

16



Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development 16



Changes to QEMU

Avatar2 provides a costomized QEMU

• All located in a single subfolder: hw/avatar

• New board: Configurable Machine

• Already present in the first avatar

• Allows flexible configuration of emulated hardware

• New peripheral: avatar-peripheral

• Communicates with avatar2 via posix message queues

• Utilizes custom remote-memory protocol

17



Additional features

• Architecture independent design

• Internal memory layout representation

• Legacy python support

• Peripheral modeling

• Plugin System

• Assembler/Disassembler

• Orchestrator

• Instruction Forwarder

18



Examples



avatar2-scripting: High-Level Overview

An avatar2 scripts needs to:

1. Create the Avatar-object

2. Define a set of targets

3. Optionally define memory layout

4. Specify an execution plan

19



Hello World

Demo

20



Binary Instrumentation

• Let’s move on to a real target!

• Proof of concept implementation of HARVEY2

• Malware for a COTS PLC

• The plc utilizes multiple boards

• Code injection via JTAG

2Garcia, Luis, et al. ”Hey, My Malware Knows Physics Attacking PLCs with

Physical Model Aware Rootkit.” NDSS 2016.

21



Binary Instrumentation

(Fragile) Demo

22



Demo backup ;)

23



Improving Fault Detection

• Part of WYCINWYC3

• Joint work with SIEMENS

• Investigates challenges specific to fuzz testing embedded
devices

• Fault detection

• Instrumentation

• Scalability

• Evaluates different strategies to aid fuzz-testing

• Uses avatar2 for partial and full emulation of the firmware

3Muench, Marius, et.al. ”What you corrupt is not what you crash: Challenges

in Fuzzing Embedded Devices” To be presented at NDSS 2018

24



The setup

• Two Targets

• STM32l152re

• PANDA

• Target Software

• expat, a popular XML-parser

• Artificially inserted vulnerabilities

• Orchestration

• Board initilization on physical device

• Emulation of main-loop inside PANDA

• Analysis

• 5 PANDA plugins to detect different types of vulnerabilities

• Mimicry of existing techniques for desktop software

• Doesn’t require modification of the firmware

25



Evaluation

• 100 Fuzzing sessions in different setups

• Native

• Partial emulation with I/O forwarding

• Partial emulation with avatar2-peripherals

• Full emulation

• Plugins could detect previously undetected faults

• Full emulation provided better performance than native

fuzzing

• More details in the paper:

http://s3.eurecom.fr/docs/ndss18 muench.pdf

26



Record & Replay

• Dynamic binary analysis of firmware requires often the device

• PANDA allows to record and replay execution

• Allows exchange of executions fur further analysis without the

device

27



Record & Replay

Demo

28



Symbolic Execution and Complex Software (WIP)

• Firefox with inserted bug

• Executed concretely inside gdb until function of interest

• Analysis of only one thread

• Automated memory layout extraction from gdb

• Transfer of layout into angr

• Copy-On-Read

• Symbolic function arguments

29



Symbolic Execution and Complex Software (WIP)

Preliminary Results:

• Approximatly 10 minutes of runtime

• 36 executed basic blocks

• 21 uniquely accessed pages

• Found the bug

30



Examples: Recap

5 Examples:

• Dynamic Instrumentation of GDB

• Dynamic Instrumentation of a plc

• Fault Detection with an development board and PANDA

• Record and Replay with an development board and PANDA

• Symbolic Execution with firefox and gdb

31



Conclusion



Conclusion

• Dynamic firmware analysis is still a challenging topic

• Avatar2 aims to tackle some of the challenges

• Multi-target orchestration is not limited to firmware

32



Plans for 2018

• Move main development to github

• Introduce proper versioning

• More, exciting targets

33



Wanna help?

Get in touch with us:

• #avatar2@freenode

• avatar2@lists.eurecom.fr

• Talk to me

We may be looking for people to join our group in the near future

34



Shouts

• S3@Eurecom

• jzaddach

• Subwire & domenukk

• Zardus & ccm

• Tasteless

35



Thank you!

35


	Binary Firmware Analysis
	Tooling Landscape
	The avatarmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg2 framework
	Examples
	Conclusion

