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Binary Firmware Analysis



Motivation

• Amount of embedded devices steadily increasing

• Misconfigurations, bugs, and vulnerabilities are common

• A lot of reported vulnerabilities are ”low-hanging fruits”

• Discovery of more complex bugs benefits from sophisticated

tooling
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Major Challenges

• Variety of platforms

• Memory layout

• Peripherals

• Often no OS-level abstractions

• Many devices use monolithic firmware

• Hardware interactions are embedded in firmware code

• Memory Mapped I/O

• Interrupts

• Variety of architectures
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https://en.wikipedia.org/wiki/List of ARM microarchitectures#Designed by ARM
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Further Challenges

• Instrumentation

• Emulation

• Fault detection

• Interrupt handling

• Microarchitecture dependent instructions
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Tooling Landscape



Binary Analysis Tools for Firmware

• A lot of binary analysis tools for desktop software

• Way less for embedded devices software

• Especially when considering open source tools

• Often, challenges for embedded devices exceed capabilities of
static analysis tools

• Assumuption about environment may not hold true

• Difficult to infer peripheral behaviour and interrupts
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FiE

• Based on KLEE

• Targets MSP430 firmware

• Symbolic Execution

• Uses explicit analysis, memory and interrupt specifications

• Requires source code of firmware

Davidson, Drew, et al. ”FIE on Firmware: Finding Vulnerabilities in Embedded

Systems Using Symbolic Execution.” USENIX Security Symposium 2013.
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Firmadyne

• Based on Qemu

• Targets ARM & MIPS firmware

• Instrumented Linux kernel

• Automated analysis of web pages and SNMP implementations

• Automated testing with known exploits

• Works only for Linux based firmware with no too specific

kernel modules

Chen, Daming D., et al. ”Towards Automated Dynamic Analysis for Linux-based

Embedded Firmware.” NDSS 2016.
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LuaQemu

• Based on instrumented QEMU

• Work in progress

• Example targets BCM4358 firmware

• Prototyping of Boards with LUA

• Instrumentation capabilities

• Requires a significant amount of modeling and trial & error

https://github.com/Comsecuris/luaqemu
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Avatar

• Based on S2E (QEMU+KLEE) and OpenOCD/GDB

• Targets ARM firmware

• Partial emulation together with real hardware

• I/O forwarding

• Orchestration

• Symbolic Execution

• Heavily tied to the S2E infrastructure

• Requires the presence of the physical device

Zaddach, Jonas, et al. ”AVATAR: A Framework to Support Dynamic Security Analysis

of Embedded Systems’ Firmwares.” NDSS 2014.
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Observations

• A lot of focus on ARM

• QEMU’s emulation capabilities are a common building block

• Frameworks are heavily bound to underlying components
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The avatar2 framework



The big picture

• Dynamic Multi-Target Orchestration and Instrumentation

Framework

• Focus on firmware analysis

• Python based framework

• Re-designed and re-implemented from scratch

• Open source: https://github.com/avatartwo

• Research project

• Released in June 2017
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Who?

• Developed by the Software and System Security Group at

Eurecom

• Specifically:

• Marius Muench

• Dario Nisi

• Aurélien Francillon

• Davide Balzarotti

http://s3.eurecom.fr/
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main goals

• Target orchestration

• Abstraction of debuggers, emulators and other frameworks

• Easy addition of new targets

• Separation of execution and memory

• Enables I/O forwarding/remote memory

• State transfer and synchronization

• Don’t keep the state of analysed software local to single targets
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avatar2- components

• avatar2 core

• Targets

• Endpoints

• Protocols
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avatar2- architecture overview
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Implemented Targets

GDB

QEMU

PANDA

angr1

1Still under development
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Changes to QEMU

Avatar2 provides a costomized QEMU

• All located in a single subfolder: hw/avatar

• New board: Configurable Machine

• Already present in the first avatar

• Allows flexible configuration of emulated hardware

• New peripheral: avatar-peripheral

• Communicates with avatar2 via posix message queues

• Utilizes custom remote-memory protocol
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Additional features

• Architecture independent design

• Internal memory layout representation

• Legacy python support

• Peripheral modeling

• Plugin System

• Assembler/Disassembler

• Orchestrator

• Instruction Forwarder
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Examples



avatar2-scripting: High-Level Overview

An avatar2 scripts needs to:

1. Create the Avatar-object

2. Define a set of targets

3. Optionally define memory layout

4. Specify an execution plan
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Hello World

Demo
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Binary Instrumentation

• Let’s move on to a real target!

• Proof of concept implementation of HARVEY2

• Malware for a COTS PLC

• The plc utilizes multiple boards

• Code injection via JTAG

2Garcia, Luis, et al. ”Hey, My Malware Knows Physics Attacking PLCs with

Physical Model Aware Rootkit.” NDSS 2016.
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Binary Instrumentation

(Fragile) Demo
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Demo backup ;)
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Improving Fault Detection

• Part of WYCINWYC3

• Joint work with SIEMENS

• Investigates challenges specific to fuzz testing embedded
devices

• Fault detection

• Instrumentation

• Scalability

• Evaluates different strategies to aid fuzz-testing

• Uses avatar2 for partial and full emulation of the firmware

3Muench, Marius, et.al. ”What you corrupt is not what you crash: Challenges

in Fuzzing Embedded Devices” To be presented at NDSS 2018
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The setup

• Two Targets

• STM32l152re

• PANDA

• Target Software

• expat, a popular XML-parser

• Artificially inserted vulnerabilities

• Orchestration

• Board initilization on physical device

• Emulation of main-loop inside PANDA

• Analysis

• 5 PANDA plugins to detect different types of vulnerabilities

• Mimicry of existing techniques for desktop software

• Doesn’t require modification of the firmware
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Evaluation

• 100 Fuzzing sessions in different setups

• Native

• Partial emulation with I/O forwarding

• Partial emulation with avatar2-peripherals

• Full emulation

• Plugins could detect previously undetected faults

• Full emulation provided better performance than native

fuzzing

• More details in the paper:

http://s3.eurecom.fr/docs/ndss18 muench.pdf
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Record & Replay

• Dynamic binary analysis of firmware requires often the device

• PANDA allows to record and replay execution

• Allows exchange of executions fur further analysis without the

device
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Record & Replay

Demo
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Symbolic Execution and Complex Software (WIP)

• Firefox with inserted bug

• Executed concretely inside gdb until function of interest

• Analysis of only one thread

• Automated memory layout extraction from gdb

• Transfer of layout into angr

• Copy-On-Read

• Symbolic function arguments
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Symbolic Execution and Complex Software (WIP)

Preliminary Results:

• Approximatly 10 minutes of runtime

• 36 executed basic blocks

• 21 uniquely accessed pages

• Found the bug
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Examples: Recap

5 Examples:

• Dynamic Instrumentation of GDB

• Dynamic Instrumentation of a plc

• Fault Detection with an development board and PANDA

• Record and Replay with an development board and PANDA

• Symbolic Execution with firefox and gdb
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Conclusion



Conclusion

• Dynamic firmware analysis is still a challenging topic

• Avatar2 aims to tackle some of the challenges

• Multi-target orchestration is not limited to firmware
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Plans for 2018

• Move main development to github

• Introduce proper versioning

• More, exciting targets
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Wanna help?

Get in touch with us:

• #avatar2@freenode

• avatar2@lists.eurecom.fr

• Talk to me

We may be looking for people to join our group in the near future
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Shouts

• S3@Eurecom

• jzaddach

• Subwire & domenukk

• Zardus & ccm

• Tasteless
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Thank you!
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