Setup For Failure: Defeating
Secure Boot

Corey Kallenberg
Sam Cornwell
Xeno Kovah

John Butterworth

@coreykal
@sscOrnwell
@xenokovah
@jwbutterworth3

The Malware Food Chain

Earliest
More execution
Powerful Platform Firmware time on
(BIOS/UEFI) platform
Boot Loader/MBR
Later
execution
L oss time on
Powerful platform

* Rootkits that execute earlier on the platform are in a
position to compromise code that executes later on
the platform, making earliest execution desirable.

Malware Food Chain:
Blood in the Water

\\\\\\\\\

Compromised d
Operating Systerp## -

* |t's advantageous for malware to claw its way up the food-
chain and down towards hardware.

* Previously, malware running with sufficient privileges on
the operating system could make malicious writes to both

the Master Boot Record and the BIOS.

—

/ N
Writes to me

must be :
Platform Firmware

(BIOS/UEFI)
BIOSRootkit

signed!

Compromised
Operating System

 Many modern platforms implement the
requirement that updates to the firmware must
be sighed. This makes compromising the BIOS
with a rootkit harder.

More on Signed BIOS Requirement

* Signed BIOS recommendations have been
around for a while now and preceded
widespread adoption of UEFI.

* Not perfect, but significantly raises the barrier
of entry into the platform firmware.

e “Attacking Intel BIOS” by Rafal Wojtczuk and
Alexander Tereshkin.

e “Defeating Signed BIOS Enforcement” by
Kallenberg, Butterworth, Kovah and Cornwell.

Platform Firmware
(BIOS/UEF)

BlOS Rootkit
I’m still
vulnerable to

bootklts ®

-

* Signed BIOS requirement did not address
malicious boot loaders, leaving the door open
for bootkits/evil maid attacks.

Bootloader/MBR
Bootkit

Compromised
Operating System

Enter UEFI

* UEFI has largely replaced conventional BIOS for
PC platform firmware on new systemes.

 UEFI 2.3.1 specifies a new security feature
“Secure Boot” in order to address the bootkit
vulnerability present on conventional BIOS

systems.
e When enabled, Secure Boot validates the

integrity of the operating system boot loader
before transferring control to it.

Platform Firmware
(UEFI)

With Secure Boot
Enabled

Malicious
Write to MBR

) BootlLoader/MBR
Sticks

Bootkit

Compromised
Operating System

e Secure Boot does not prevent the initial malicious
write to the boot loader (unlike signed bios
enforcement)

Are you on the
list bro?

Platform Firmware Y~ | |
(UEF1) Discovered target boot loader
With Secure Boot
Enabled

B Sccure Boot Verification

* Upon discovery of the overwritten (malicious)
boot loader, the platform firmware will attempt

to cryptographically verify the integrity of the
target OS loader.

You're not on
the list bro.

Platform Firmware
(UEF)
With Secure Boot
Enabled

B Sccure Boot Verification

* Because the boot loader is not sighed with a
key embedded into the firmware, UEFI will
refuse to boot the system.

Platform Firmware
(UEF1)
With Secure Boot

Enabled Secure Boot Verification
Option ROM

Removable
Media

o -
- @

Secure Boot is not limited to verifying only the boot
loader.

Secure Boot will attempt to verify any EFl executable that
it attempts to transfer control to.

Sort of..

switch (GetImageType (File)) {

case IMAGE_FROM_FV:
Policy = ALWAYS_EXECUTE;
break;

case IMAGE_FROM_OPTION_ROM:
Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy);
break;

case IMAGE_FROM_REMOVABLE_MEDIA:
Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy);
break;

case IMAGE_FROM_FIXED_MEDIA:
Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy);
break;

default:
Policy = DENY_EXECUTE_ON_SECURITY_VIOLATION;
break;

* The signature check on target EFl executables doesn’t always occur.

 Depending on the origin of the target executable, the target may be
allowed to execute automatically.

* Inthe EDK2, these policy values are hard coded.

Code from EDK2 open source reference implementation available at:
https://svn.code.sf.net/p/edk2/code/trunk/edk?2

Platform Firmware
(UEFI)

With Secure Boot
Enabled Secure Boot Verification

- i

'mstill allowed to >\
l execute even though _/) ("‘
\ I’'m not signed / "\--..,j

——— R\ / S — _—

. . . Removable
Cop -
; @

* Forinstance, an unsigned option ROM may be
allowed to run if the OEM is concerned about

breaking after market graphics cards that the user
adds in later.

-)
No fair!),

//

Attack Proposal

* |f a Secure Boot policy was configured to allow
unsigned EFIl executables to run on any
mediums that an attacker may arbitrarily
write to (boot loader, option rom, others...)
then other legitimate EFl executables can be

compromised later.

Platform Firmware
(UEF)

With Secure Boot
Enabled Secure Boot Verification
ption ROM Fixed Drive with
Infected legitimate
Windows boot
E ~

88 Windows 8
Option ROMs are often
unprotected against writes

Malicious
Kernel Driver

* The malicious option rom will run before the
legitimate Windows boot loader.

I've been
hooked!

Platform Firmware
(UEFI)

With Secure Boot
Enabled Secure Boot Verification
y N

ption ROM Fixed Drive with
Infected legitimate
Windows OS
. B8 Windows 8

* Malicious option rom hooks some code that legitimate
Windows boot loader will call later (think old school
BIOS rootkit IVT hooking).

* The actual flash chip contents aren’t modified here, only in-memory copies of relevant firmware code/
structures.

Platform Firmware
(UEF!)
With Secure Boot

rOption ROM Fixed [.).nve with I run because I am d.ngl'fally
e cted legitimate signed and integrity is
Windows OS (temporarily) intact.

. B8 Windows 8

* Legitimate boot loader proceeds to execute as
normal.

Platform Firmware
(UEFI)
With Secure Boot
Enabled

Option ROM "“I’d Drive with
Infected t.agltlmate Windows kemel now
Windows OS compromised at load time.
- ’ 88 Windows 8

* Boot loader is compromised by BIOS code.

* Operating system is then later compromised.

Platform Firmware
(UEFI)
With Secure Boot
Enabled

xed Drive with

Windows kemel now
compromised at load time.

@ 88 Windows 8

 Malware has successfully evolved into a more
dominant species on the malware food chain.

Limitless possibilities

ise th e rest of a secure
f an attacker controlled exl
due to a relaxed secure bo

) manw;other ways an att

You can’'t make
the tough decisions
until you ask
the tough questions.

 What does the secure boot policy look like on
real systems?

* How can you detect the secure boot policy of
the system without manually testing?

@ ra 5
rdx, [rsp+38h+argSetupVariableSize]
rcx, aSecureboot
sub_18000C874
r9, [rsp+38h+argSetupVariableSize] ; DataSize
rdx, gSetupGuid ; VendorGuid
cs:qword_180048FF8, rax
rax, gSetupVariableData
rcx, VariableName
[rsp+38h+Data], rax ; Data
rax, cs:gRuntimeServices
r8d, r&d ;3 Attributes
[rsp+38h+argSetupVariableSize],
[rax+EFI_RUNTIME_SERVICES.GetVariable]
ecx, ecx
rdi, rax
short loc_180@00E@D5

@ ra =5

cs:gSetupValid, cl
short loc_18000EQF6

loc_18000E@ODS:

mov cs:gImageFromFVPolicy, cl

mov cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
mov cs:gImageFromRemovablePolicy,

mov cs:gImageFromFixedPolicy,

mov cs:gSetupValid, cl

 The above shows disassembly of the secure boot
policy initialization on Dell Latitude E6430 BIOS

revision Al2.

Wl ra B3

cmp cs:gSetupValid, cl
jnz short loc_13000EOF6

loc_18000EQDS5:

mov cs:gImageFromFVPolicy, cl

mov cs:glmageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
mov cs:gImageFromRemovablePolicy,

mov cs:gImageFromFixedPolicy,

mov cs:gSetupValid, cl

 The Secure Boot policy can be either hardcoded,
or derived from the EFI “Setup” variable.

e |t turns out the contents of the “Setup” variable
makes this determination.

SPI Flash

BootOrder = ...
Non Volatile Variables Language = “English”
Setup=1100440100....

DxelmageVerificationHandler(EFI_EXECUTABLE image) {
switch (getlmageOrigin(image)) {

case IMAGE_FROM_OPTION_ROM:
policy = Setup.LOAD_FROM_OROM; //typically DENY_ON_VIOLATION

case IMAGE_FROM_FIXED_DRIVE:
policy = Setup.LOAD_FROM_FIXED;

case IMAGE_FROM_REMOVABLE:
policy = Setup.LOAD_FROM_REMOVABLE;

if (policy == ALWAYS_EXECUTE)
return EFI_SUCCESS;

else
return IsimageAllowed(image);

 The EFl variables are typically stored on the
SPI Flash chip that also contains the platform
firmware (UEFI code).

Cross Roads

 The Dell’s | looked at did not have relaxed
option rom policies as | had previously
hypothesized.

* The EFIl “Setup” variable became my next
target of attention.

Variable NV+RT+BS 'EC87D643-EBA4-4BB5-A1ES5-3F3E36B20DA9:Setup’' DataSize = C5E
©00000e0: 01 OO OO 20 OO OO OO ©0-00 @1 37 37 00 00 05 64
00000010: OO OO PO 02 OO OO Ol ©O-00 0O 00 00 00 00 01 01
00000020: 0O 00 O1 OO OO OO 0O ©0-00 00 00 01 01 01 01 Ol
©0000030: 02 OO OO OO OO 02 O ©0-01 0 0 01 01 01 01 01
00000040: 01 00 ©1 ©1 1 00 0 ©1-00 00 01 01 01 01 01 01
00000050: 01 01 04 04 04 00 04 ©04-04 04 0 O O 0 00 0
00000060 :

00000070

* .
*
*
*
*
*
*
*
*

*¥ ¥ ¥ X X ¥ * *

e Setup variable is marked as Non-Volatile (Stored
to flash chip), and as accessible to both Boot
services and Runtime Services.

 We should be able to modify it from the
operating system.

* |t's also quite large... lots of stuff in here!

Secret Protections?

* The Setup variable is of obvious importance to
the security of the platform, which made me
wonder if there was some secret protection
that would prevent me from writing to it.

* As a first attempt to demonstrate | could write
to the Setup variable from Windows, | tried to
just zero out the variable. This turned out to
be a very bad idea...

SetFirmwareEnvironmentVariable
function

Sets the value of the specified firmware environment variable.

Syntax

C++

BOOL WINAPI SetFirmwareEnvironmentVariable(
In LPCTSTR lpName,
In LPCTSTR 1lpGuid,
In PVOID pBuffer,
In DWORD nSize

)

e Starting in Windows 8, Microsoft provides an API
for interacting with EFl non volatile variables.

SPI Flash

BootOrder = ...

Non Volatile Variables Language = “English”
Setup =00 .. 00 00 00 00 00

Setup =00 .. 00 00 00 00 00 I

am Windows 8

UEFI Code

* Any guesses as to what happened?

* Hint: you can tell I've already taken the laptop apart
(this picture was taken post-surgical-recovery).

* Hint: you can tell I've already taken the laptop apart
(this picture was taken post-surgical-recovery).

* Having to fix this would be very unpleasant for
your organization.

Back on target

* Although devastating, bricking the firmware is
“just” a denial of service attack.

e Let’s get back to trying to break secure boot.

SPI Flash

BootOrder = ...

Non Volatile Variables Language = “English”
Setup =00 .. 01 00 00 00 00

I Setup.LOAD_FROM_OROM = ALWAYS_EXECUTE;
UEFI Code Setup.LOAD_FROM_FIXED = ALWAYS_EXECUTE;

== W| N d OWS 8 Setup.LOAD_FROM_REMOVABLE = ALWAYS_EXECUTE;

Setup =00..01 00 00 00 00

* By twiddling the bits in the Setup variable, we can:
- Force the firmware to used the Setup defined Secure

Boot policy
- Force the Secure Boot policy to “ALWAYS_ EXECUTE”

everything, no matter if it is sighed or not.

Platform Firmware
(UEH)

With Secure Boot
Enabled Secure Boot Verification

N

Removable

Fixed Drive

Option ROM

Media

— — e

* All executables, no matter their origin or whether or not they are
signed are now allowed to execute.

* Secure boot is still “enabled” though it is now effectively disabled.

Attack 1 Summary

Malicious Windows 8 privileged process can
force unsigned executables to be allowed by
Secure Boot

Exploitable from userland
Bootkits will now function unimpeded

Secure Boot will still report itself as enabled
although it is no longer “functioning”

Co-discovered by Intel team

Attack 1 Corollary

* Malicious Windows 8 privileged process can
force can “brick” your computer

* Reinstalling the operating system won’t fix this
* Exploitable from userland

Who is responsible?

We first identified this vulnerability on a Dell

St
St
St

NIS
NIS

_Latitude E6430.

oroblem specific to the E64307?

oroblem specific to Dell?

nis vulnerability present in the UEFI
reference implementation?

Who is to responsible?

We first identified this vulnerability on a Dell

St
St
St

NIS
NIS

_Latitude E6430.

oroblem specific to the E64307 No.

oroblem specific to Dell? No.

nis vulnerability present in the UEFI
reference implementation? No.

American

5%— Megatrends @i n Syd e phoen ix
t nologies

7”7

7

/ sus Ilenovo

S

* Intheory:
— UEFI specifies how platform firmware should be developed and provides a
reference implementation.

— Independent BIOS Vendors develop platform firmware based on UEFI
specification and reference implementation.

— OEMs get the firmware development frameworks from the IBVs, and
customize it to their own needs.

<5 Uhiee €INSYyde phoenix
i

7”7

7

/ s Ilenovo

S

* In practice:

— OEMs will use different IBVs for different computer models. Firmware can
vary dramatically between computers of the same OEM.

— Sometimes OEMs won’t use IBV code at all, and will instead choose to “roll
their own.”

— IBVs may or may not actually use the UEFI reference implementation code.

Who dunnit?

* Vulnerability does not appear in UEFI
reference code.

* Vulnerability affects multiple OEMSs, not just
Dell.

* Conclusion: Vulnerability was introduced by
one of the IBVs. Our analysis suggests that it
was probably AMI.

= American
—=—= Megatrends

Authenticated Variables

 We've seen how EFIl variables that are
writeable by the Operating System can
potentially be abused.

* But not all EFIl variables are arbitrarily
writeable during the “runtime phase” of the
system.

* Authenticated variables require knowledge of
a private key in order to be modified.

Authenticated Variables

e Authenticated variables store critical Secure
Boot information such as:

— The list of authorized keys by which an EFI
executable can be signed in order to function with
Secure Boot.

— A list of “allowed hashes” for EFl executables.
— A list of “denied hashes” for EFl executables.
— Etc.

 Authenticated variables co-exist on the SPI
flash chip with the platform firmware.

SPI Flash

NV+RT: BootOrder = ...

NV+RT: Language = “English”

NV+RT: Setup =00 .. 01 00 00 00
NV+RT+AT: KEK = A1 59 CO A5 E4 94 ..
NV+RT+AT: PK =43 20 88 ..
NV+RT+AT: DB =11 02 CO ..

Non Volatile Variables

UEFI Code

* SPI Flash is getting crowded, we have:

— The UEFI code which should not be arbitrarily writeable at
runtime.

— Authenticated EFI Variables which are writable if knowledge of
a private key is proven.

— Non-Authenticated Runtime variables, which should be
arbitrarily writeable by the operating system.

SPI Flash

NV+RT: BootOrder = ...

NV+RT: Language = “English”

NV+RT: Setup =00 .. 01 00 00 00
NV+RT+AT: KEK = A1 59 CO A5 E4 94 ..
NV+RT+AT: PK =43 20 88 ..
NV+RT+AT: DB =11 02 CO ..

Non Volatile Variables

UEFI Code

* How can OEMs implement the different write-
ability properties of these different
components, which all exist on the same
medium (SPI Flash)?

Intel SPI Flash Protection Mechanisms

* |Intel provides a number of protection
mechanisms that can “lock down” the flash
chip.

* |t's up to OEMs/IBVs to use these Intel
provided mechanisms in a coherent way to
implement things like:

— UEFI variable protection
— Signed firmware update requirement

BIOS CNTL

BIOS Lock Enable (BLE) — R/WLO.

1 0 = Setting the BIOSWE will not cause SMIs.

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only be
cleared by a PLTRST#

BIOS Write Enable (BIOSWE) — R/W.

0 = Only read cycles result in Firmware Hub I/F cycles.

0 1 = Access to the BIOS space is enabled for both read and write cycles. When this bit is
written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is
generated. This ensures that only SMI code can update BIOS.

 The above bits are part of the BIOS_CNTL register on the
ICH.

 BIOS_CNTL.BIOSWE bit enables write access to the flash
chip.

 BIOS_CNTL.BLE bit provides an opportunity for the OEM to
implement an SMM routine to protect the BIOSWE bit.

from: http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

SMM BIOSWE protection (1 of 2)

o =

* Here the attacker tries to set the BIOS Write
Enable bit to 1 to allow him to overwrite the
BIOS chip.

SMM BIOSWE protection (2 of 2)

e The write to the BIOSWE bit while BLE is 1

causes the CPU to generate a System
Management Interrupt (SMI#).

SMM BIOSWE protection (2 of 2)

NSPI/
5\\0
RSM

* The SMM code immediately writes O back to
the BIOSWE bit before resuming the kernel
code

SMM BIOSWE protection (2 of 2)

* The end result is that BIOSWE is always O
when non-SMM code is running.

Protected Range SPI Flash Protections

21.1.13 PRO—Protected Range 0 Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 74h Attribute: R/W
Default Value: 00000000h Size: 32 bits
Note: This register can not be written when the FLOCKDN bit is set to 1.
Bit Description

Write Protection Enable — R/W. When set, this bit indicates that the Base and Limit
fields in this register are valid and that writes and erases directed to addresses between
them (inclusive) must be blocked by hardware. The base and limit fields are ignored
when this bit is cleared.

30:29 | Reserved

Protected Range Limit — R/W. This field corresponds to FLA address bits 24:12 and
specifies the upper limit of the protected range. Address bits 11:0 are assumed to be

31

28:16 FFFh for the limit comparison. Any address greater than the value programmed in this
field is unaffected by this protected range.
Read Protection Enable — R/W. When set, this bit indicates that the Base and Limit
15 fields in this register are valid and that read directed to addresses between them

(inclusive) must be blocked by hardware. The base and limit fields are ignored when
this bit is cleared.

14:13 | Reserved

Protected Range Base — R/W. This field corresponds to FLA address bits 24:12 and
specifies the lower base of the protected range. Address bits 11:0 are assumed to be
000h for the base comparison. Any address less than the value programmed in this
field is unaffected by this protected range.

12:0

* Protected Range registers can also provide write protection to the flash chip.

HSFS.FLOCKDN

HSFS—Hardware Sequencing Flash Status Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 04h Attribute: RO, R/WC, R/W
Default Value: 0000h Size: 16 bits
Bit Description

Flash Configuration Lock-Down (FLOCKDN) — R/W/L. When set to 1, those Flash
Program Registers that are locked down by this FLOCKDN bit cannot be written. Once
set to 1, this bit cah only be cleared by a hardware reset due to a global reset or host
partition reset in an Intel® ME enabled system.

15

 HSFS.FLOCKDN bit prevents changes to the
Protected Range registers once set.

Intel Protections Summary

* The Protected Range and BIOS_CNTL registers
provide duplicative protection of the SPI flash
chip that contains the platform firmware.

— Protected Range registers can be configured to
block all write access to ranges of the SPI Flash.

— BIOS_CNTL protection puts SMM in a position to
decide who can write to the SPI Flash.

_ SPI Flash
SPI Write Cycle
: NV+RT: MyVar = “Hello”

NV+RT: BootOrder = ...
NV+RT: Language = “English”

Non Volatile Variables NV+RT: Setup =00 .. 01 00 00 OO
NV+RT+AT: KEK=A1 59 COA5E4 94 ..
NV+RT+AT: PK =43 20 88 ..
NV+RT+AT: DB =11 02 CO ..

UEFI Code

1

o= Windows 8

MyVar = “Hello”

* The architecture of the UEFI variable implementation
requires SMM to perform the actual writing.

* The alternative would be to allow Ring0 code write
access to the variable region of the SPI Flash, which

would allow malicious Ring0 code to bypass Secure
RANnt

SPI Flash

Relies on
Non Volatile Variables BIOS CNTL
Protection

Protected
UEFI Code Range
protection

* The key observation is that the variable region of the flash
cannot use protected range protection, as it has to be
writeable by someone at runtime.

* |Instead, the variable region has to rely on the “strength”
of BIOS_CNTL protection.

* The Authenticated Variable dependency on
BIOS_CNTL protection dictates that the attack
surface against Secure Boot is a superset of the
attacks against SMM.

SMM is bullet proof right?

SMM Cache Poisoning vulnerabilities
— Duflot and Invisible Things Lab

“Getting into the SMRAM: SMM Reloaded” by
Duflot

“Attacking Intel BIOS” by Invisible Things Lab

“Defeating Signhed BIOS Enforcement” by
MITRE

SMM and UEFI

csc\fvsc\fv3\43172851-cf7e-4345-9fe@-d7012bb17b88\csc iFfsSmm
csc\fvsc\fv3\5552575a-7e00-4d61-a3a4-f7547351b49e\csc SmmBaseRuntime
csc\fvsc\fv3\59287178-59b2-49ca-bc63-532bl2ea2c53\csc PchSmbusSmm
csc\fvsc\fv3\6869c5b3-ac8d-4973-8b37-e354dbf34add\csc CmosManagerSmm
csc\fvsc\fv3\753630c9-fae5-47a9-bbbf-88d621cd7282\csc SmmChildDispatcher
csc\fvsc\fv3\77a6009e-116e-464d-8ef8-b35201a022dd\csc DigitalThermalSensorSmm
csc\fvsc\fv3\7fed72ee-0170-4814-9878-a8fb1864dfat\csc SmmRelocDxe
csc\fvsc\fv3\8d3be215-d6f6-4264-beab-28073fbl3aea\csc SmmThunk
csc\fvsc\fv3\921cd783-3e22-4579-a71f-00d74197fcc8\csc HeciSmm
csc\fvsc\fv3\9cc55d7d-fbff-431c-bcl4-334eaeab052b\csc SmmDisp
csc\fvsc\fv3\abbad9f7-ab78-491b-b583-c52b7f84b9e@\csc SmmControl
csc\fvsc\fv3\abb74f50-fd2d-4072-a321-cafc72977efa\csc SmmRelocPeim
csc\fvsc\fv3\acaeaa7a-c039-4424-88da-f42212eaBe55\csc PchPcieSmm
csc\fvsc\fv3\bc3245bd-b982-4f55-9f79-856ad7e987c5\csc AhciSmm
csc\fvsc\fv4\025b3ec4-28dc-44ae-8c94-de7563be743f\csc DellFnUsbEmulationSmm
csc\fvsc\fv4\0369cd67-fa74-45a3-bdcb-d25675d5ffde\csc DellOA3@CtrlSmm-Edkl_©6-Pil ©-Uefi2 1
csc\fvsc\fv4\08abeB65-c359-4b95-8d59-c1b58eb657b5\csc IntelLomSmm
csc\fvsc\fv4\e99fd87f-4b39-43f6-ab4a7-f801199209f7\csc DellDcpRegisterSmm-Edkl_06-Pil_@-Uefi2_1
csc\fvsc\fv4\e9d2cb46-c303-42c2-9726-5704alfdfbbd\csc DellVariableSmmWrapper
csc\fvsc\fv4\0d28c529-87d4-4298-8a54-40f22a9fe24a\csc DellDaHddProtectionSmm-Edkl_©6-Pil_©-Uefi2_ 1
csc\fvsc\fv4\ed81lfdc5-cb98-4b9f-b93b-70a9c@663abe\csc DellDccsSmmDriver
csc\fvsc\fv4\0dde9636-8321-4edf-9f14-8bfca3b4a73f5\csc DellIntrusionDetectSmm
csc\fvsc\fv4\1137¢c217-b5bc-4e9a-b328-1e7bcd530520\csc DellThermalDebugSmmDriver
csc\fvsc\fv4\1181lel6d-afll-4c52-847e-516dde9bd376\csc DellCenturyRolloverSmm
csc\fvsc\fv4\119f3764-a7¢c2-4329-b25¢c-e6305e743049\csc DellSecurityVaultSmm-Edkl_@6-Pil_@-Uefi2_1
csc\fvsc\fv4\12963e55-5826-469e-a934-a3cbb3076ec5\csc SmmSbAcpi
csc\fvsc\fv4\1478454a-4584-4cca-bod2-120acel29dbb\csc DellMfgModeSmmDriver
csc\fvsc\fv4\166fde43-eal3-4848-bb3c-6Ta295b94627\csc DellVariableSmm-Edkl_@6-Pi@_9-Uefi2_1
csc\fvsc\fv4\16c368fe-f174-4881-92ce-388699d34d95\csc SmmGpioPolicy
csc\fvsc\fv4\lafebbdo-c9c5-44d4-b7bd-8f5e7d0f2560\csc DellDiagsSbControlSmm
csc\fvsc\fv4\26c04cf3-f5fb-4968-8d57-c7fa@a932783\csc SbServicesSmm
csc\fvsc\fv4\2a502514-1e81-4cda-9b50-8970fadac311\csc

e Of the 495 individual EFI modules on my Dell Latitude
E6430, 144 appear to contribute code to SMM...

Disturbing Trend

* Although SMM should be treated as a “trusted
code base” due to its security critical nature,
the amount of code executing in SMRAM
appears to be on an upward trajectory

* Expect more vulnerabilities here in the future,

any of which could be used to bypass Secure
Boot.

Today’s Result

* BIOS_CNTL protection of the SPI Flash can be
defeated on a large number of systems by

temporarily suppressing SMM.
— Attack does not require arbitrary code execution
in SMM.

* But how can we suppress SMM?

. ®
LPC Interface Bridge Registers (D31:F0) ‘ I n tel

13.8.3.7 SMI_EN-—SMI Control and Enable Register

I/O Address: PMBASE + 30h Attribute: R/W, R/WO, WO, R/WL
Default Value: 00000002h Size: 32 bit

Lockable: No Usage: ACPI or Legacy

Power Well: Core

GBL_SMI_EN — R/WL.

0 0 = No SMI# will be generated by PCH. This bit is reset by a PCI reset event.
1 = Enables the generation of SMI# in the system upon any enabled SMI event.
NOTE: When the SMI_LOCK bit is set, this bit cannot be changed.

* On systems without SMI_LOCK set, we can temporarily
disable SMIs and write to flash regions relying on
BIOS _CNTL protection, like the EFI variable region.

e 3216 of 8005 (~40%) systems surveyed did not have
SMI_LOCK set.

— A greater number could probably be made vulnerable by
downgrading the BIOS to a vulnerable revision, which is usually
allowed.

Source: Intel 8-series-chipset-pch-datasheet.pdf

Disabled BIOSWE protection (1 of 2)

jp—
-

* Again the attacker tries to set the BIOS Write Enable
bit to 1 to allow him to overwrite the BIOS chip.

Disabled BIOSWE protection (2 of 2)

)

* This time the SMI that protects BIOSWE fails
to fire.

SPI Flash

NV+RT: BootOrder = ...

NV+RT: Language = “English”

NV+RT: Setup =00 .. 01 00 00 00
Non Volatile Variables NV+RT+AT: KEK=11 11 ..

NV+RT+AT: PK =43 20 88 ..

NV+RT+AT: DB =11 02 CO ..

e Windows 8

SPI Write: KEK =11 11 ..

* Ring0 can now modify authenticated EFI
Variables, which allows trivial bypassing of
Secure Boot.

UEFI Code

Demo

e Demo video

Other ways to suppress SMM?

* Yes.

* Chipset dependent, read your chipset
documentation ;)

SMM_ BWP

13.1.32 BIOS_ _CNTL—BIOS Control Register

(LPC I/F—D31:F0)

Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 20h Size: 8 bit
Lockable: No Power Well: Core

Bit Description

7:6 Reserved

SMM BIOS Write Protect Disable (SMM_BWP)— R/WLO.

This bit set defines when the BIOS region can be written by the host.

5 0 = BIOS region SMM protection is disabled. The BIOS Region is writable regardless if
processors are in SMM or not. (Set this field to 0 for legacy behavior)

1 = BIOS region SMM protection is enabled. The BIOS Region is not writable unless all
processors are in SMM.

e SMM_ BWP offers a way to prevent malicious
Ring0 writes to the SPI Flash even if SMI’s are
suppressed.

Source: Intel 8-series-chipset-pch-datasheet.pdf

SMM_ BWP

13.1.32 BIOS_ _CNTL—BIOS Control Register
(LPCI/F—D31:FO0)

Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 20h Size: 8 bit
Lockable: No Power Well: Core

Bit Description

7:6 Reserved

SMM BIOS Write Protect Disable (SMM_BWP)— R/WLO.

This bit set defines when the BIOS region can be written by the host.

5 0 = BIOS region SMM protection is disabled. The BIOS Region is writable regardless if
processors are in SMM or not. (Set this field to 0 for legacy behavior)

1 = BIOS region SMM protection is enabled. The BIOS Region is not writable unless all
processors are in SMM.

* Of the 8005 systems we surveyed, only 6
actually set the SMM_BWP bit.

Source: Intel 8-series-chipset-pch-datasheet.pdf

Attack 2 Summary Part 1

* Many OEMs are misconfiguring the Intel
provided flash protection mechanisms

* On these systems, Secure Boot can be
bypassed by a compromised operating system

that is able to temporarily suppress SMM and
then make direct writes to the authenticated

variable region of the flash chip.
* Requires Ring0 code execution in Windows

Attack 2 Summary Part 2

* Itis required that the SPI Flash region associated
with EFl variables be writable to at least SMM,
thus the protections applied to this region are
fundamentally weaker.

* This weakness can often be exploited through
SMI suppression, leading to a Secure Boot break.

 OEMSs/IBVs could improve the security of this
region by setting SMM_BWP, but most are not
doing so currently.

Another UEFI Attack Surface

 We've now talked about defeating Secure
Boot by:

— Abusing Non-Authenticated EFI Variables that are
being used in security critical ways

— Abusing misconfigured Flash protection
mechanisms to overwrite security critical
authenticated variables

* Now let’s talk about memory corruption
attack surface against UEFI...

Remember this?

CVE-ID

CVE-1999-0046 Learn more at National Vulnerability Database (NVD
TT=——""""""" s Severity Rating « Fix Information = Vulnerable Software Versions « SCAP Mappings

Description

Buffer overflow of rlogin program using TERM environmental variable.

References

Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

« CERT:CA-97.06.rlogin-term
+ XF:rlogin-termbo

Date Entry Created

19990827 Disclaimer: The entry creation date may reflect when the CVE-ID was allocated or reserved, and does not necessarily i
discovered, shared with the affected vendor, publicly disclosed, or updated in CVE.

This is an entry on the CVE list, which standardizes names for security problems.

SEARCH CVE USING KEYWORDS: | | | submit |
You can also search by reference using the CVE Reference Maps.

For More Information: cve@mitre.org

* Long ago there were many privilege escalations in *nix
environments associated with suid programs using and
parsing environment variables in unsafe ways.

* Set TERM=AAAAAAAAAAAAAAAAAAAAA........

* You thought they were gone/defeated/never
to return...

* |T’s back.

SPI Flash

Non Volatile Variables
Set VAR=AAAAAAAA.... I
UEFI Code

am Windows 8

* Instead of guest to root privilege escalation, this
time we are possibly looking at Ring0 to Secure
Boot bypass, or beyond...

SPI Flash

Non Volatile Variables

I @
Wlndows 8

e There is room for memory corruption vulnerabilities in the UEFI
firmware’s parsing of attacker controlled variables.

* Vulnerabilities in here would allow an attacker to hijack EIP and
circumvent Secure Boot... or worse.

 But how complicated can the parsing of these EFl variables be?

Variable NV+RT+BS
000000 : B0
Variable NV+RT+BS

000 : B0 90
Variable NV+RT+BS
000000 : 00 00
Variable NV+RT+BS
00000 : BE FF
Variable NV+RT+BS

Variable NV+RT+BS
©0000000: AC 38
Variable NV+RT+BS
0000000 : 00 01
Variable NV+RT+BS
0000 : 00 B0
©0000010:. B0 B0
Variable NV+RT+BS
000000 : 18 4E
Variable NV+RT+BS

"78CE2354-CFBC-4643-AEBA-07A27FA892BF :WdtPersistentData' DataSize

* K
"E6C2F70A-B604-4877-85BA-DEEC89E117EB:PchInit’' DataSize
F9 77 S I

= 4

DataSize

'EC87D643-EBA4-4BB5-A1ES5-3F3E36B20DA9: SetupDptfFeatures’

'"Efi:MonotonicCounter' DataSize
FF FF 60 60 060 00-00 00 00 FE
'87F22DCB-7304-4105-BB7C-317143CCC23B:MrcS3Resume’

DataSize BES8

'87F220CB-7394-4105-BB7C-317143CCC238:ScramblerBaseSeed' DataSize

00 00 63 DF 00 ©0- *.8. -
'EC87D643-EBA4-4BB5-A1E5-3F3E36B20DA9: SetupSanmeeatures

00 00 00 00 ©1 ©1-00 00
'C4975200-64F1-4FB6-9773-F6A9F89D985E : SaPegData’

00 OO0 OO PO OO PO-00 0O PO OO PO O 00 O

00 00 00 1 FF ©0-
"Efi:GnvsAreaVar'

44 77 ©0 00 00 00- . e
'@1F33C25-764D-43EA-AEEA-6B5A41F3F3E8:SbAsl1BufferPtrVar'

DataSize

DataSize

DataSize

* Quite complicated, many variables are:
— large
— Proprietary, undocumented, vendor specific
— Used in weird and complicated ways

Coming Summer 2014

* Extreme Privilege Escalation in Windows 8/
UEFI

— Will be using exploits against this EFl variable
attack surface to hijack control of EIP very early in
the system, allowing an attacker to pivot to even
more privileged parts of the system

— Appearing in Blackhat USA and DEF CON

Final Thoughts

 UEFI and Secure Boot are good things
ultimately for computer security

— Attack vectors that were previously open are
being addressed

— An open source reference implementation should
allow us to eventually have something like a
trusted code base. This is superior to the
“everyone roll’s their own proprietary voodoo”
that was prevalent in conventional BIOS.

* UEFI still has growing pains it will have to
endure

Related Work

 “ATale of One Software Bypass of Windows 8
Secure Boot”

— Black Hat USA 2013
— First published attack against Secure Boot

— If SPI Flash is writable, malicious code with 10 access
can defeat Secure Boot.

* “Defeating Signed BIOS Enforcement”
— EkoParty, HITB, PacSec 2013

— BIOS_CNTL protection of the SPI Flash can be
defeated by SMM present malware.

Acknowledgements

ntel PSIRT team
Rafal Wojtczuk

Rick Martinez
EFIPWN developers

