Exploiting NoSQL Like
Never Before

HITB AMS 2014

#HITB20T4AME

De Beurs van Berlage

The 5th Annual
Hack In The Box
Security Conferenc
in The Netherlands

AbO Ut M e * Independent Security Researcher
* Member @ OpenSecurity

e Currently Pursuing My Bachelors Degree (Amal Jyothi Colle
Engineering)

* Spoken @ a couple of Conferences
* Sleep @ Morning, Researches and Codes @ Night

 And | Live in India (Kerala)

DEFCON KERALA 2014

KOCHI, KERALA

www.defconkerala.com

India is Awesome Kerala is
Super Awesome ©

Tea Gardens

Vp)]
Q
RS
e
)
Qo)
@
M

Boat Racing

Agenda

* More Emphasis Given on the Server-Client and Server Management
Consoles

* Pentesting Scenarious are given more importance.

* We will not deal with Memory Related Bugs or issues.
* Demos

INTRO TO NOSQL

2 Words “Super COOL”

Key Takeovers

Schema less

“ACID” (atomicity,
consistency,
isolation and

durability)

VI
Open-source I '

Running well on Built for the 21st
clusters century web estates

Not using the
relational model

Mainly 4 types

Wide Column
Store / Column
Families

Document
Store

Key Value /
Tuple Store

Graph
Databases

Hbase

MongoDB

Riak

Neo4)

Cassandra

CouchDB

Redis

DEX

TABULAR DOCUMENTS RELATIONAL /7 SQL

Google sigtavie

‘ mongo DB

X

& Cloudant

e Key-Value Sparse Column Document Level Transactional Reads / Writes
ds / Writes Families (~Tables) Reads / Writes
Analytics No Analytics No Joins, Limited Joins, Scalable Jc

Some Aggregates Some Aggregates and Aggreg

Query Complexity

NoSQL Security

Why Developers Need to
Worry 7

Low on Security

Emphasizes on “Trusted Environment”
Weak Authentication Mechanisms or No security by Default.

Man in the Middle Widely

Open Source and API’s Widely Exposed.

API for PHP widely abused.

You Will Love this Part ©
o N -

> Results 1-10 of about 84388 for port:27017

{"couchdd""Welcome" "version""} Search

> Results 1-10 of about 1736 for {"couchdb":"Welcome","version™"}

> Results 1-10 of about 37413 for 6379

ABUSING APl CALLS

No Proper Validation in API Calls

Developers Use them to Develop various Applications

PHP is easy to abuse for Mongo ,Couch, Cassandra.

MongoDB

Mongo Trivia

Written in: C++

Main point: Retains some friendly properties of
SQL. (Query, index)

Protocol: Custom, binary (BSON)

Mongod is the "Mongo Daemon” running on Port
27017 by Default

Web Interface Runs on 28017

Mongo is the Client > Mongod

Uses MongoDB Wire Protocol (TCP/IP Socket)

Data is Represented using JSON format

Mongo Architecture

Mongo Client Mongo Client Mongo Client

Mongo Server

ta Cke 'S Mongo Client Mongo Client Mongo Client
rspective

W

Sniffing,Enumeration,JS Injection,DOS

UTT\AY
N— 4

Mongo Server

JS Attack Surface

Issues

JavaScript Attacks mostly used against MongoDB

Vulnerabilities Keep Popping Up

e Run command RCE

Mongo Shell Functions Purely Based on JavaScript
Possible Chances to Overwrite Functions

Resource Exhaustion

Regex Matching ,plenty of JavaScript operations could be used

Create DB

* use dbname

Create Collection

¢ db.createCollection(“collection_name”)

Insert Data

)O I I | e ¢ db.collection_name.insert({user_id:”25”,age:10})
Delete Data

J S efu | e db.collection_name.remove({user_id:”"25"})

Drop

\/I O n gO ¢ db.dropDatabase()

e db.collection_name.drop()

“ommands

e db.version()

Stats
¢ db.hostInfo ()

Useful Commands for us

db.killOp(opid)
db.listCommands()
db.loadServerScripts()

db.logout()

db.repairDatabase()

db.runCommand(cmdObj)

db.serverStatus()
db.shutdownServer()
db.stats()
db.version()

The list doesn’t end here more API calls @ Mongo References.

Mapping SQL Logical Commands to MongoDB

e and mapped to &&
e orto ||

(__«¢

e ="{0O (——1

Saving JavaScript

Post Exploitation Phase

* Allows the attacker to write JavaScript functions and save them
e Can use for further attacks when needed.
e db.system.js.save(
{
_id : “hitb2014ams"
value : function (x, y){ return x +vy; }

}
);
* db.loadServerScripts()

Injecting JavaScript

Reference to DB in Mongo

* Mongo Functions get to refer the db object and its main functions
* An attacker who finds an Injection point could abuse this.

* Found in Versions 2.2 or less

* Mongo Patched for versions above.

Does JS Injection end here?

Timing Based Checks

* Application can be tested for time based attacks
* Mongo Shell Supports most of JavaScript functions

 function(){ return sleep(500);} would render the application response
delayed by 5sec.

* Module added to NoSQL framework while testing for JS Injection
attacks

THIS Pointer Reference

* Although mongo blocks reference to the db has ended

e Attacker could use this pointer to return objects and dumping as
always

Vulnerable APP DEMO

What if THIS is Blocked? Version to Rescue

* Version command by default binds to mongo instances defined
functions

* So if an admin blocks the “this” pointer

* function(){return this}

* Function(){return version} or function(){return version())

* Scenario useful when developer uses Swhere to evaluate js code.

Vulnerable APP DEMO

Mongo With PHP

PHP converts parameter with brackets to arrays.

e Already addressed issue in previous researches

Lets Look at some New vectors

e Sexists
* Stype
e Sall

Vulnerable APP DEMO

Resource Exhaustion

Mongo on 32 bit environment is too easy for attackers (Max Size limit 2GB)

Use command creates arbitrary schemas on the fly

Attacker could run it continuously exhausting the disk space resource as well as
memory.

var i=1;while(1){use i=i+1;}

e An empty database takes up 192Mb

CouchDB

CouchDB Architecture

Couch Architecture

Couch FUTIL
Interface

Administrator

uchDB
‘acker Perspective

Couch FUTIL Administrator

Interface

Key Features

Written in: Erlang
CouchDB document is a object

Schema-Free

Main point: DB consistency, ease of use

Protocol: HTTP/REST
Distributed database system

Runs on Default Port : 5984,Binds to loopback interface by default

Client uses REST APl to communicate with the Backend

Futon Web Interface

Attack Surface

Admin Party = Game Over.
Auth Cookie Sniffable

Credentials Send over Unencrypted Channel

XSPA attacks in Replication (limited to port web server ports)

XSS,HTML Injection in Futon Interface

DOS (Versions on 1.5 and below),File Enumeration attacks

Vulnerabilities

XSS at the token interface

HTML injection can be used by attackers to lure the victim to other
sites.

XSPA Attack can be used in the replication to check whether port
IS open or not

Blind File Name Enumeration possible within the Replication

Addressing Auth Cookie

Defaults to Expire within 10 min

Attacker gaining access would want to use these 10 min

Fruitfully

NoSQL Framework kicks in with automation session
grabbing and dumping necessary info.

PHP on Couch Driver

Uses Curl Library to send the requests to the API

Un validated PHP APPS could result in calling Arbitrary APl Call Execution

Download PHP on Couch:

https://github.com/dready92/PHP-on-Couch/

/**

*# fetch a CouchDB document

* @param string $id document id
* @return object CouchDB document
* @throws InvalidArgumentException

*/

public function getDoc (%id) {

if (!strlen(%id))
throw new InvalidArgumentException ("Document ID is empty™);

if (preg_match('/"_design/',%id))

$url = '/'.urlencode($this->dbname).'/_design/'.urlencode(str_replace('_design/',"'',%id));

else

$url '/'.urlencode($this->dbname)."'/"'.urlencode(%id);
$doc_query = $this->query_parameters;
$this->query_parameters = array();

$back = %$this->_queryAndTest ('GET', $%url, array(208),%doc_query);
if (!$this->results_as_cd) {
return $back;
s
$this->results_as_cd = false;
$c = new couchDocument($this);
return %$c->loadFromObject(%$back);

* uses PHP cURL API

* @param string $method HTTP method to use (GET, POST, ...)

* @param string %url URL to fetch

* @param array $parameters additionnal parameters to send with the request

* @param string|array|object $data request body

* @param string %$content_type the content type of the sent data (defaults to application/json)

* @return string|false server response on success, false on error
*
* @throws Exception
o §
public function _curl_query (%$method, %url, $parameters = array() , %data = NULL, %content_type = NULL) {
if (!in_array($method, $this->HTTP_METHODS))
throw new Exception("Bad HTTP method: $method");

$url = $this->dsn.%url;
if (is_array(%$parameters) AND count($parameters))
$url = Surl.'?'.http_build_query($parameters);
$http = $this->_curl_buildRequest($method,%url,%data, %content_type);
$this->_curl_addCustomOptions ($http);
curl_setopt($http,CURLOPT_HEADER, true);
curl_setopt($http, CURLOPT_RETURNTRANSFER, true);
curl_setopt($http, CURLOPT_FOLLOWLOCATION, true);

$response = curl_exec($http);
curl_close($http);

Vulnerable APP DEMO

Redis

Redis Architecture

: <>
Redis

G—-

A S
Archiver '

P

|

.

. / Gateway

Some Happy Client

Key Features

* Key Value storage engine.

* Contains Redis Server and Client
* Driven By a Config File

* Documentation is Laugh in a Park

* Redis supports five data structures:
* strings, hashes, lists, sets and ordered sets.

Attacks Discussed

* Bruteforce Redis Passwords

e Denial of Service on the FLY.

* Command Killing
* Config Rewrite
* Arbitrary File Rewrite

HHHHHHHHHHHHHHHHHHHHHHHHHHHAHHHHEE CCOIIDTTV HHHHHHHHHHHHHHHHHHHHHH A HH
TTIT IR AT AT 1 11 08 1 AT 0 01 07 A7 17 10 01 7 47 10 0 47 7 47 1 11 47 AT 47 11 11 47 '_'lE(_UF\ITT TEIT I I T AT 0 01 T AT 00 01 01 08 A7 10 00 47 T 47 10 01 47 AT 47 11 11 07

Require clients to issue AUTH <PAS JOPDw before proce
commands. This might be useful in environments in whi

U1S-Server,

This should stay commented out for backward compatibility and because
people do not need auth (e.g. they run their own servers).

Warning: since Redis is pretty fast an outside user can try up to
50k passwords per second against a good box. This means that you shou
use a very strong password otherwise it will be very easy to break.

* Blind File Enumeration (usefull in pentests)

Redis Version

e Redis Version 2.6
* No Support For Scripting.

e Redis Introduced version 2.8
* Added Ability for LUA Scripts

Did We Just Say Scripting ?

Welcome to Redis LUA Script Engine and
Basics

e Redis uses LUA to manage scripts

* LUA engine is properly sandboxed and offers enough security
* Global variables protection

e Scripts are Executed using eval (Available from Redis 2.6)

* Limited number of available of Available Libraries for Use
* base lib.
 table lib.
e string lib.
* math lib.
e debug lib.
* cjson lib.
cmsgpack lib.

Key Points

 EVAL and EVALSHA are used to evaluate scripts using the Lua
interpreter built into Redis.

* SCRIPT KILL,LISTS,EXISTS

* Important NB: When a script is running no other functions can be
accessed or any operations can be performed

Sample Lua One Line DOS

redis-cli eval "S(cat test.lua)" O
* test.lua

Commands Disabled By an Attacker

 rename-command APl Call Used

« Sample Command
 rename-command CONFIG I33tshit

* rename-command CONFIG ™
» Disables the command completely

Arbitrary File Rewrite

* CONFIG GET

* Gives the Current set of Configuration

* CONFIG SET

» Sets the configuration of the default command

e CONFIG SET dir /var/www

File Name Enumeration

* Restricted Environment
 Allows to use dofile (open file in lua scripting)
* Although file doesn’t open gives the file or directory exists or not

* eval "dofile('/var/www')" O
* Directory Exists but cant open file

* eval "dofile('/var/wwws')" O
* No such directory exists

ts DEMOtime/

Vulnerable APP DEMO

Cassandra

Key Takeaways

* Written in: Java
* Main point: Store huge datasets in "almost" SQL

* Protocol: CQL3 & Thrift

e CQL3 is very similar SQL, but with some limitations that come from
the scalability (most notably: no JOINs, no aggregate functions.)

* Runs on Port : 9160

Sad Facts 7

* No OR

* No UNION

* No subrequests

* Terms must be indexed

* Primary key can only be queried for

Security Issues

e Cassandra model » Keyspace (=database) » ColumnFamily > Data
* CQL injection on Web Apps

* Shell Commands can be useful to attacker(during privilege
escalation).
* SOURCE command
* Reads the contents of the file

* Database Enumeration and Dumping using NoSQL Exploitation
Framework

ts DEMOtime/

H-Base

Key Points

* Written in: Java

* Main point: Billions of rows X millions of columns
* Protocol: HTTP/REST (also Thrift)

* Port:6379,8080(Rest API)

* Emphasis on Trusted Environment

Security Issues

* By Default offers No Security
* Man in The Middle Attacks

* REST API exposed

* Database Scanning and Enumeration using NoSQL Exploitation
Framework

NoSQL DB’s Never End!!
More Research Needed

* Ne04j,Memcache,Riak are under scanners(Some Discussed
Vulnerabilities applies to those also)

e Support for Neo4j,Memcache and Riak soon to be added
* Memory Leaks and Overflows on the Rise

* An excellent address to Ne04j security issue was written recently
* Link:http://blog.scrt.ch/2014/05/09/neo4j-enter-the-graphdb/

s Automation Needed?

Do We have a framework ?

NoSQL Exploitation Framework

Key Points

A framework of one of its Kind

Open Source, Written In Python

e | am not a hardcode coder(Bugs are prone ©)

Over 1200 lines of code ©

Documented API’s

Code Download:nosqlproject.com

Key Features

e Support for Mongo,Couch,Redis-Base and Cassandra

e Support for:
* NoSQL Run Web Applications
e Tests for JavaScript Attacks
* Mongo DB S Attacks
* Couch PHP Driver Attack Vectors
* Multithreaded Mass IP List Scanner

And the List Continues

Database Cloning Feature

Brute force & Dictionary attacks

* Post Exploitation Module Integrated
Shodan IP List Grabber

* Sniffing DB credentials and cookies
 Added More Payload List

Future Updates

e Updated Cassandra and HBase attacks

* Resource Exhaustion

* Support for Riak, Memcache and Ne04j on its way.
* More Stable (Bug Less ©)

ts DEMOtime/

Bugs or Contribute ©

 Official Mailing List: feedback@nosqlproject.com
e Contribute By pulling from GITHUB.

References

* http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis

Thank You

Grab Me On

 Facebook : francis.alexander.33
* Twitter: @torque59
* Github: torque59

e LinkedIn:

