Advanced Format String Attacks

Presented by Paul Haas

Feakk
oggcn

Contents

« Background < How-to

 Abstract * Tools
e Definition « Exploits
o Context Conclusion

 Technique ¢ Q&A

Background

*Lead Web Application Security Engineer at
Redspin, Inc with over 4 years experience in

hundreds of audits.
* This talk 1s not associated with my company
*Defcon 13 CTF winner (Shellphish 2005)
* Alumni of UCSB’s Computer Security Group

« Mario Kart DS: Rob in Tank on Rainbow Road

#include <stdio.h>

int main(int argc, char **argv){

printi(argv(1]);

In

Out

Reading arbitrary locations
Writing arbitrary locations
Executing arbitrary code

Get a shell

Without

RTFM and Writing it yourseli!

Format String Attack

e Software vulnerability in certain C functions that
perform string formatting leading to the potential to
write arbitrary data to arbitrary locations

e Despite easy solutions, vulnerabilities and
ignorance of issue still exist, hence the talk

« Common in hackademic exercises

« Talk assumes you have a basic idea of the
attack (%x, %s, %n)

* Talk details technique but tools do not require it

Brief History

¢ 1990: csh “Interaction Effect” crash: 10%8t

« 1999-09-17: proftpd 1.2.0pre6 “Argument attack/
snprintf Vulnerability” (BID 650)

«2000-06-22: wu-ftpd 2.6.0 Remote Format String
Stack Overwrite Vulnerability (BID 1387)

« 2000-09-09: “"Format String Attacks” whitepaper by
Tim Newsham

«2010-06-30: KVIrc DCC Directory Traversal and
Multiple Format String Vulnerabilities (BID 40746)

Old Technique

 Manual popping up of stack using string of “%x’s
* Get overwrite address using other technique

» Search for shellcode in core after SEGFAULT

e Characters written using long value in %x or %c
Final write to address using %n

 Frequent RTFM

« Write once, use once

Current Technique

« %D gives detailed information of stack location

* %s allows us to view known stack addresses as strings
* %NNc controls number of bytes written

* %hhn allows single byte writes

e Direct parameter access shortens format string:
%5%n = %p%p%pY%pP%pfn

New Technique

 Format String Attack allows us to dump stack
» Stack contains interesting information:
data, code pointers, stack addresses
our format string, format string’s address
stack offset location of all of the above

 Knowledge of this gives us the address of any value
on the stack

* These values are enough to write our exploit

Our Vulnerable Code

#include <stdio.h>

int main(int argc, char **argv){
printf(argv(1));

[

4 Compile and setup insecure environment

1I

gcc printf.c -w -O0 -ggdb -std=c99 -static -D_FORTIFY
SOURCE=0 -fno-pie -Wno-format -Wno-format-security
-fno-stack-protector -z norelro -z execstack -o printt

sudo sysctl -w kernel.randomize va_space=0

Exploit Steps

 Dump stack values until format string is found
Locate pointer address of format string
* Choose our overwrite address on the stack

 Point format string at overwrite address and write
address of shellcode to end of string

» Adjust offsets for ‘chicken and egg’ problem:
Address of format string based on its length

Format string needs its own address to reference

Stack Dump

 Method 1: Pass a long string of %p’s
/printf ‘perl -E ‘say “%p 'x200"
 Method 2: Execute binary in loop with % NNN$p

for i in {001..200}; do echo -n “$i = “ ; ./printf
“%%i\$p”; echo; done

* Search for hex representation of string
$ = 0x24, % = 0x25 , p = 0x70

* Result will be stack offset of format string

Format String Address

« Execute binary in loop with sequential %NNN$s
Will cause SEGFAULTS, may trip any IDS systems

for i in {001..100}; do echo -n “$i = “ ; ./printf
“%$i\$p:%Pi\$s”; echo; done | grep -v *$

 Create format string only comprising of addresses
obtained from stack dump

Single execution/string prevents SEGFAULT

Much more elegant, verifies constant stack

Offset + Address = WIN

Matching up an offset to a stack address allows us to
learn the address of any location on the stack

Example:
Offset 100 (OxBFFFF100): Our format string
sizeof(pointer) = 4 bytes * 100 pointers = 400
Offset 1 = OxBFFFF100 + 400 = OxBFFFF290

Overwrite Location

 Common exploit locations require binary
examination tools: PLT, DTORS, LIBC

- Advance format string attack could extract these
from known binary headers (difficult)

 Return addresses are stored on the stack
We know the stack address of each value

* Overwrite these locations to point to shellcode

Issues

 Different format strings lengths effect stack addresses,
yet we assume stack is constant

Keep all strings to same modulus of sizeof(pointer)
 Format string may not align with stack address
Keep padding requirement when addressing string

- Even with the correct modulus and pad, our string
offset may be oft

Verify our exploit before we attempt it by reading
rather than writing to our overwrite location

Result

It is possible to create a format string exploit using
only 2 executions of the vulnerable program with no
program exceptions

 Math only, no bruteforcing necessary

 Incorporate shellcode as part of format string

e Smaller format string butfers are also possible
8 bytes to examine a stack address

Format string as small as 68 bytes + shellcode

Format String
Auto Exploitation

* Proof of concept tool in Python

 Instructions for running on Backtrack 4

* Multiple exploit and overwrite options

* Missing some usetful features:
Separate execution of independent steps
Architectures independent (x86 & 64)
Read arbitrary locations rather than write

Finer control over exploit

Metasploit Integration

« Control each step of the exploit individually or
automate entire process

*Use as payload generator
« Uses Metasploit payload library for shellcode

 Integrates into other modules and
injection functionality

* Functionality will be demonstrated during Defcon

Demonstrations

» Testing Code <Known exploit
 OverTheWire +<0-Day?

Summary

* The output from format string attacks gives you
everything you need to know to go from discovery
to compromise

* The exploitation process can be automated from
start to finish

 Format string attacks are easy to fix, and now are
easy to exploit as well

* There are plenty of vulnerable programs out there to
discover and exploit

Questions?

Thanks

* The most recent version of this presentation and
associated tools can be found on
and

 Look for the incorporation of the tools in this talk in
Metasploit in the near future

« Any follow-up questions can be addressed to
phaas AT redspin DOT com

* Shouts to the Shellphish, G. Vigha “zanardi” and the
Goats at Redspin {ap3r, jhaddix, fulgOre, D3, OwNpile,
Yimmy & b3tty}

