
Advanced Format String Attacks
Presented by Paul Haas

Contents

•		Background

•		Abstract

•		Definition

•		Context

•		Technique

•		How-to

•		Tools

•		Exploits

•		Conclusion		

•		Q&A

Background

•	Lead	Web	Application	Security	Engineer	at	
Redspin,	Inc	with	over	4	years	experience	in	
hundreds	of	audits.

•	This	talk	is	not	associated	with	my	company

•	Defcon	13	CTF	winner	(Shellphish	2005)

•	Alumni	of	UCSB’s	Computer	Security	Group

•	Mario	Kart	DS:	Rob	in	Tank	on	Rainbow	Road

In

#include	<stdio.h>

int	main(int	argc,	char	**argv){

					 printf(argv[1]);

}

Out

Reading	arbitrary	locations

Writing	arbitrary	locations

Executing	arbitrary	code

Get	a	shell

Without

RTFM	and	Writing	it	yourself!

Format String Attack

•	Software	vulnerability	in	certain	C	functions	that	
perform	string	formatting	leading	to	the	potential	to	
write	arbitrary	data	to	arbitrary	locations

•	Despite	easy	solutions,	vulnerabilities	and	
ignorance	of	issue	still	exist,	hence	the	talk

•	Common	in	hackademic	exercises

•	Talk	assumes	you	have	a	basic	idea	of	the	
		attack	(%x,	%s,	%n)

•	Talk	details	technique	but	tools	do	not	require	it

Brief History

•	1990:	csh	“Interaction	Effect”	crash:	!o%8f

•	1999-09-17:	proftpd	1.2.0pre6	“Argument	attack/
snprintf	Vulnerability”	(BID	650)

•	2000-06-22:	wu-ftpd	2.6.0	Remote	Format	String	
Stack	Overwrite	Vulnerability	(BID	1387)	

•	2000-09-09:	“Format	String	Attacks”	whitepaper	by	
Tim	Newsham

•	2010-06-30:	KVIrc	DCC	Directory	Traversal	and	
Multiple	Format	String	Vulnerabilities	(BID	40746)

Old Technique

•	Manual	popping	up	of	stack	using	string	of	‘%x’s

•	Get	overwrite	address	using	other	technique

•	Search	for	shellcode	in	core	after	SEGFAULT

•	Characters	written	using	long	value	in	%x	or	%c

•	Final	write	to	address	using	%n

•	Frequent	RTFM

•	Write	once,	use	once

Current Technique

•	%p	gives	detailed	information	of	stack	location

•	%s	allows	us	to	view	known	stack	addresses	as	strings

•	%NNc	controls	number	of	bytes	written

•	%hhn	allows	single	byte	writes

•	Direct	parameter	access	shortens	format	string:
	 %5$n	=	%p%p%p%p%p%n

New Technique

•	Format	String	Attack	allows	us	to	dump	stack

•	Stack	contains	interesting	information:

	 	 data,	code	pointers,	stack	addresses

	 	 our	format	string,	format	string’s	address

	 		 stack	offset	location	of	all	of	the	above

•	Knowledge	of	this	gives	us	the	address	of	any	value	
on	the	stack	

•	These	values	are	enough	to	write	our	exploit

Our Vulnerable Code

#include	<stdio.h>

int	main(int	argc,	char	**argv){
					 printf(argv[1]);
}
#	Compile	and	setup	insecure	environment

gcc	printf.c	-w	-O0	-ggdb	-std=c99	-static	-D_FORTIFY_
SOURCE=0	-fno-pie	-Wno-format	-Wno-format-security	
-fno-stack-protector	-z	norelro	-z	execstack	-o	printf

sudo	sysctl	-w	kernel.randomize_va_space=0

Exploit Steps

•	Dump	stack	values	until	format	string	is	found

•	Locate	pointer	address	of	format	string

•	Choose	our	overwrite	address	on	the	stack

•	Point	format	string	at	overwrite	address	and	write	
address	of	shellcode	to	end	of	string

•	Adjust	offsets	for	‘chicken	and	egg’	problem:

	 	 Address	of	format	string	based	on	its	length

	 	 Format	string	needs	its	own	address	to	reference

Stack Dump

•	Method	1:	Pass	a	long	string	of	%p’s

	 	 ./printf	`perl	-E	‘say	“%p”x200’`

•	Method	2:	Execute	binary	in	loop	with	%NNN$p

	 	 for	i	in	{001..200};	do	echo	-n	“$i	=	“	;	./printf
	 	 “%$i\$p”;	echo;	done

•	Search	for	hex	representation	of	string

	 	 $	=	0x24,	%	=	0x25	,	p	=	0x70

•	Result	will	be	stack	offset	of	format	string

Format String Address

•	Execute	binary	in	loop	with	sequential	%NNN$s

	 	 Will	cause	SEGFAULTS,	may	trip	any	IDS	systems

	 	 for	i	in	{001..100};	do	echo	-n	“$i	=	“	;	./printf		 	 	 	 	
	 	 “%$i\$p:%$i\$s”;	echo;	done	|	grep	-v	^$

•	Create	format	string	only	comprising	of	addresses	
obtained	from	stack	dump

	 	 Single	execution/string	prevents	SEGFAULT

	 	 Much	more	elegant,	verifies	constant	stack

Offset + Address = WIN

Matching	up	an	offset	to	a	stack	address	allows	us	to	
learn	the	address	of	any	location	on	the	stack

	 Example:

	 	 	 Offset	100	(0xBFFFF100):	Our	format	string

	 	 	 sizeof(pointer)	=	4	bytes	*	100	pointers	=	400

	 	 	 Offset	1	=	0xBFFFF100	+	400	=	0xBFFFF290

Overwrite Location

•	Common	exploit	locations	require	binary	
examination	tools:	PLT,	DTORS,	LIBC

•	Advance	format	string	attack	could	extract	these	
from	known	binary	headers	(difficult)

•	Return	addresses	are	stored	on	the	stack

	 	 We	know	the	stack	address	of	each	value

•	Overwrite	these	locations	to	point	to	shellcode

Issues

•	Different	format	strings	lengths	effect	stack	addresses,	
yet	we	assume	stack	is	constant

	 	 Keep	all	strings	to	same	modulus	of	sizeof(pointer)

•	Format	string	may	not	align	with	stack	address

	 	 Keep	padding	requirement	when	addressing	string

•	Even	with	the	correct	modulus	and	pad,	our	string	
offset	may	be	off

	 	 Verify	our	exploit	before	we	attempt	it	by	reading		
	 	 rather	than	writing	to	our	overwrite	location	

Result

•	It	is	possible	to	create	a	format	string	exploit	using	
only	2	executions	of	the	vulnerable	program	with	no	
program	exceptions

•	Math	only,	no	bruteforcing	necessary

•	Incorporate	shellcode	as	part	of	format	string

•	Smaller	format	string	buffers	are	also	possible

	 	 8	bytes	to	examine	a	stack	address

	 	 Format	string	as	small	as	68	bytes	+	shellcode

Format String
Auto Exploitation

•	Proof	of	concept	tool	in	Python

•	Instructions	for	running	on	Backtrack	4

•	Multiple	exploit	and	overwrite	options

•	Missing	some	useful	features:

	 	 Separate	execution	of	independent	steps	

	 	 Architectures	independent	(x86	&	64)

	 	 Read	arbitrary	locations	rather	than	write

	 	 Finer	control	over	exploit

Metasploit Integration

•	Control	each	step	of	the	exploit	individually	or	
automate	entire	process

•	Use	as	payload	generator	

•	Uses	Metasploit	payload	library	for	shellcode

•	Integrates	into	other	modules	and	
		injection	functionality

•	Functionality	will	be	demonstrated	during	Defcon

Demonstrations

•		Testing	Code

•		OverTheWire

•	Known	exploit

•	0-Day?

Summary

•	The	output	from	format	string	attacks	gives	you	
everything	you	need	to	know	to	go	from	discovery	
to	compromise

•	The	exploitation	process	can	be	automated	from	
start	to	finish

•	Format	string	attacks	are	easy	to	fix,	and	now	are	
easy	to	exploit	as	well

•	There	are	plenty	of	vulnerable	programs	out	there	to	
discover	and	exploit

Questions?

Thanks

•	The	most	recent	version	of	this	presentation	and	
associated	tools	can	be	found	on	www.redspin.com	
and	www.defcon.org

•	Look	for	the	incorporation	of	the	tools	in	this	talk	in	
Metasploit	in	the	near	future

•	Any	follow-up	questions	can	be	addressed	to	
		phaas	AT	redspin	DOT	com

•	Shouts	to	the	Shellphish,	G.	Vigna	”zanardi”	and	the	
Goats	at	Redspin	{ap3r,	jhaddix,	fulg0re,	D3,	OwNpile,	
Yimmy	&	b3tty}

