Overview

What is Razorback?




Razorback Is...

A framework to enable advanced processing
of data and detection of events

A
A
A

D
D

D

e to get data as it traverses the network
e to get data afterit’s received by a server
e to perform advanced event correlation

...Our answer to an evolving threat landscape



The Challenge is Different

Attacks have switched from server attacks to
client attacks
Common attack vectors are easily obfuscated
JavaScript
Compression
File formats are made by insane people

Back-channel systems are increasingly
difficult to detect



The Problem With Real-Time

Inline systems must emulate the processing
of thousands of desktops

Detection of many backchannels is most
successful with statistical evaluation of
network traffic



Coverage Gap

Broadly speaking, IDS systems deal with
packet-by-packet inspection with some level
of reassembly

Broadly speaking, AV systems typically target
indicators of known bad files or system states



Fill the Gap

A system is needed that can handle varied
detection needs

A system is needed that extensible, open and
scalable

A system is needed that facilitates incident
response, not just triggers it



Framework Goals

Provide entry to the system for any arbitrary
data type

Determine and manage detection based on a
registered detection nugget

Provide alerting to any framework-capable
system

Provide verbose, detailed logging on the
findings of the nugget “farm”

Make intelligent use of all data discovered
during the evaluation process



Architecture

What makes it tick?




Razorback is comprised of...

Dispatcher

Database

Various nugget types:
Data Collection
Data Detection/Analysis
Output
Correlation
Defense Update
Workstation



Data Model

UUIDs

types of data in data blocks
formats of metadata

types of nuggets

types of applications

Allows data to be routed to only the nuggets
equipped to deal with a given format.



The Dispatcher

The heart of the Razorback system
Available APIs:

Detection Nugget registration
Data Handler registration
Detection requests

Alerting

Full analysis logging

Output to APl compliant systems
Database driven



Database

Database is used to store important context
information surrounding the alert, such as:

Timestamp

Priority

Message

Source and destination IP
IP protocol

Short and long data fields
Any other metadata



General Nugget Functionality

Uses a persistent UUID for communicating
with the Dispatcher
Registers with Dispatcher

Types of data handled
Types of output generated



Data Collector

Capture data and generate metadata
Contact dispatcher for handling

Has this file been evaluated before?

Where should it be sent?
Pass that data set to a Detection Nugget
Accept feedback from the Dispatcher for
detection request

Asynchronous alerting

Local cache of detection outcome



Detection Nugget

Handles incoming data from Data Collectors
Splits incoming data into logical sub-blocks

Requests additional processing of sub-blocks
Provides alerting feedback to the Dispatcher



Output Nugget

Receives alert notification from Dispatcher
If alert is of a handled type, additional
information is requested:

Short Data

Long Data

Complete Data Block

Normalized Data Block
Sends formatted data to relevant system



Correlation Nugget

Interacts with the database directly
Provides ability to:
Detect trending data
Identify “hosts of interest”
Track intrusions through the network
Initiate defense updates



Defense Update Nugget

Receives update instructions from dispatcher
Performs dynamic updates of network
device(s)

Notifies dispatcher of defense update actions



Workstation Nugget

Authenticates on a per-analyst basis
Provides analyst with ability to:

Manage nugget components

Manage alerts and events
Consolidate events
Add custom notes
Set review flags
Delete events

Review system logs



Concept of Operations

How do they work together?




Data Collector

Data is captured

Metadata is generated (URL/filename)
Checks a local cache of previously looked at
URLs and data signatures

Uses an APl to manage the initial file
evaluation and cache checks

If further inspection necessary, API threads
out and ships the data off to the Dispatcher



Dispatcher

Tracks all nuggets in the system

Finds the set of nuggets with the capability to
handle the incoming data type

Routes incoming detection requests to that
set of nuggets

Keeps track of metadata via an event id



Detection Nugget

Processes data provided by the Data
Collectors, as instructed by the Dispatcher
Data is portioned out to the respective
analysis thread able to analyze that data type
Results of the analysis are sent back to the
dispatcherin the form of alerts

Additional metadata may be sent



Dispatcher, part deux

Incoming alerts are associated with their
context data via the event id

nformation is stored in the database
Portions of the capture data, namely, the
portion that triggered the alert, are stored
Dispatcher notifies all output nuggets that it
nas alert data to be retrieved




Output Nugget

Output Nugget receives notification that an
alertis available

If interested, the output nugget informs the
dispatcher it would like to retrieve this alert
Dispatcher forwards additional alert
information the output nugget



Traffic comes In...

Web traffic
SMTP traffic

Data Collector

Check Resource

Data/
Metadata

Local Cache

Check cache

Database

Query Database

API <
l Dispatcher
S
Threads out




Dispatcher farms out detection...

Type 1 thread

Data type 1

Data type 2

Dispatcher

Data type 3 Type 2 thread

Type 3 thread




Alerts are sent back...

Alert and context data

Database

Dispatcher
Detection Results/

more metadata




Output nuggets are informed...

“I come bearing qifts” Output Nugget

“No, thanks”

Dispatcher

| come bearing gifts”

“Yes, please!”

Delicious Alert Data

Output Nugget




We Like Data

MDs5 and size is stored for files and
subcomponents both bad and good
Primarily this is used to avoid reprocessing
files and subcomponents we've already
looked at

But after a update to any detection nugget,
all known-good entries are “tainted”



Why Taint known good?

JavaScrpt Nugoet

After an update to

detection, previously o
analyzed files may be '|' szono
found to be bad OO

We don’t rescan all oarar o
files

But if we see a match I N—
for mds to a previous @.:'.T;:;1::2-::1,..::;;;;;:;::;::z:.:::;z:::.[;z;

10.4.4.3 — 4/210 http:ipusscat.org'hi,pd

file, we will alert =

: 1f'1 25 15b “0984?'3033 d19b5aty
re roa C Ive y c2518db3ecBedadab140701beB567328
Client download list
10.3.2.6-21 ?."1 0 hitp:fpusscat. orgftax pdf
10.1.4.8 — /3110 hitp//pusscat orglupdate. pdf




Case Study: SMTP

What happens when an email is received?




Incoming SMTP Traffic

Client data collected by Snort-as-a-Collector
Collected data sent to SMTP Detection
Nugget for separating MIME components
MIME components are sent back through the
Dispatcher for further analysis



Snort as a Collector (SaaC)

Modified version of snort 2.8.6

Uses snort’s protocol analyzers and stream
reassembler to grab session data and hand to
Dispatcher

Dispatcher sends data to the SMTP Detection
Nugget



SMTP Detection Nugget

Receives data from SaaC via the Dispatcher
Extracts SMTP headers for metadata and
tracking information

Separates all embedded MIME components
to be sent back to Dispatcher for further
analysis

Collects alerts and sends them to the
Dispatcher for correlation



ClamAV Detection Nugget

In our example, an EXE file was attached to
email, resulting in data being sent to the

ClamAV detection nugget
Receives input files, runs through ClamAV

Alerts sent back to Dispatcher



Output Handler Nugget

Receives notifications from Dispatcher that
alerts are available

finterested in the type of alert, calls back to
Dispatcher for extended data

Provides formatted alert data to SIM




Current Capabilities

Nuggets that are currently available. Many more to come, and you can help!




Data Collectors

Snort (up to four custom builds)
SMTP mail stream capture
Web file capture
URL tracking

Stream data capture on arbitrary ports
Custom post-mortem debugger

Traps applications as they crash
Inserts the file that triggered the crash to Razorback
Sends the metadata of the crash to the dispatcher



Detection

PDF Parser

Handle deobfuscation and normalization of
objects

Potentially passing to Snort detection engine to
use the detection language

JavaScript Analyzer

Target known JavaScript attacks
Search for shellcode in unencode blocks
Look for heap-spray

Look for obvious obfuscation possibilities



Detection (cont'd...)

Shellcode Analyzer
Handle common techniques to find EIP
Look for code blocks that unwrap shellcode
Check for Windows function resolution

Determine the function call
Capture the arguments

Provide alerts that include shellcode action



Output

Deep Alerting System
Provide full logging output of all alerts
Write out each component block

Include normalized view of documents as well
Maltego Interface

Provide data transformations targeting the
Razorback database



Defense Update

Snort rules updater
ClamAV rules updater
Triggered session storage via Daemonlogger



Workstation

CLI functionality to query:
Alerts, events, and incidents

Nugget status

Display metadata

Run standardized report set



Programming Interfaces

How are nuggets created?




Custom API

Nuggets can be written via a provided API
The API provides basic functionality for:

- registering a new nugget

- sending data to be analyzed

- sending alert data to be processed

- querying the cache/database
API is written in C, but wrappers are available
for use with Ruby, Python, and Perl



Description

The API provides to the developer a set of

function calls passed as part of several C-
structures

Existing APIs
DetectionAPI
CollectorAPI
APIs for other nugget types forthcoming



CollectorAPI

registerCollector()

Register to Dispatcher

Identify custom name and UUID representing application type
checkResource()

Checks given URI before sending data to be analyzed
Function assigns an event UUID if none is provided

sendDatal()

Sends collected data for analysis
Send-and-forget; dispatcher takes care of the rest

sendMetaData()

Metadata is handled like normal data
Sent to a special nugget before being stored in the database



Detection API

registerHandler()

Registers detection function to one or more data types
Detection function must accept a data pointer and length

sendAlert()

Sends alert data to the dispatcher
Links alert to event by event UUID
Provides mechanisms for arbitrary and extensible alerting formats

sendData()/sendMetaData()

Identical to CollectorAPI counterparts

Provides detection nuggets with the ability to have sub-data blocks
analyzed via the Dispatcher



What if | don’t like C?

Nuggets can be written in Ruby, Python and

Perl
Wrappers providing interfaces to the API

functions are provided



Conclusion

Let's wrap this up!




Razorback Framework

Completely modular architecture

Each component has a highly specialized
function

Complex functions are handled by routing
sub-blocks back through the Dispatcher

The Dispatcher is the true heart of the
framework and is responsible for routing data
and alerts throughout the system



Nugget Types

Data Collector
Detection
Output
Correlation
Defense Update
Workstation



Development

Core systemisinC

APIs provided for performing all interactions
with the Dispatcher

If you can handle a data pointer and a size, all
you need to worry about is what you want to
detect!

APl Wrappers provided for Perl, Ruby, and
Python



How You Can Help

More collection nuggets needed!

Additional protocols
More detection nuggets needed!

Additional file types
More defense updater nuggets needed!

Update more network devices
More correlation nuggets needed!

Are you great at data mining? We need you!



Questions??

Patrick Mullen

pmullen@sourcefire.com

phoogazi on Twitter
Ryan Pentney

rpentney@sourcefire.com

Sourcefire VRT

labs.snort.org
vrt-sourcefire.blogspot.com
VRT_Sourcefire on Twitter



