
What is Razorback?

 A framework to enable advanced processing
of data and detection of events

 Able to get data as it traverses the network
 Able to get data after it’s received by a server
 Able to perform advanced event correlation

 …Our answer to an evolving threat landscape

 Attacks have switched from server attacks to
client attacks

 Common attack vectors are easily obfuscated

 JavaScript

 Compression

 File formats are made by insane people
 Back-channel systems are increasingly

difficult to detect

 Inline systems must emulate the processing
of thousands of desktops

 Detection of many backchannels is most
successful with statistical evaluation of
network traffic

 Broadly speaking, IDS systems deal with
packet-by-packet inspection with some level
of reassembly

 Broadly speaking, AV systems typically target
indicators of known bad files or system states

 A system is needed that can handle varied
detection needs

 A system is needed that extensible, open and
scalable

 A system is needed that facilitates incident
response, not just triggers it

 Provide entry to the system for any arbitrary
data type

 Determine and manage detection based on a
registered detection nugget

 Provide alerting to any framework-capable
system

 Provide verbose, detailed logging on the
findings of the nugget “farm”

 Make intelligent use of all data discovered
during the evaluation process

What makes it tick?

 Dispatcher
 Database
 Various nugget types:

 Data Collection

 Data Detection/Analysis

 Output

 Correlation

 Defense Update

 Workstation

 UUIDs

 types of data in data blocks

 formats of metadata

 types of nuggets

 types of applications

 Allows data to be routed to only the nuggets
equipped to deal with a given format.

 The heart of the Razorback system
 Available APIs:
 Detection Nugget registration

 Data Handler registration

 Detection requests

 Alerting

 Full analysis logging

 Output to API compliant systems
 Database driven

 Database is used to store important context
information surrounding the alert, such as:

 Timestamp

 Priority

 Message

 Source and destination IP

 IP protocol

 Short and long data fields

 Any other metadata

 Uses a persistent UUID for communicating
with the Dispatcher

 Registers with Dispatcher

 Types of data handled

 Types of output generated

 Capture data and generate metadata
 Contact dispatcher for handling

 Has this file been evaluated before?

 Where should it be sent?

 Pass that data set to a Detection Nugget
 Accept feedback from the Dispatcher for

detection request

 Asynchronous alerting

 Local cache of detection outcome

 Handles incoming data from Data Collectors
 Splits incoming data into logical sub-blocks

 Requests additional processing of sub-blocks

 Provides alerting feedback to the Dispatcher

 Receives alert notification from Dispatcher
 If alert is of a handled type, additional

information is requested:

 Short Data

 Long Data

 Complete Data Block

 Normalized Data Block

 Sends formatted data to relevant system

 Interacts with the database directly
 Provides ability to:

 Detect trending data

 Identify “hosts of interest”

 Track intrusions through the network

 Initiate defense updates

 Receives update instructions from dispatcher
 Performs dynamic updates of network

device(s)
 Notifies dispatcher of defense update actions

 Authenticates on a per-analyst basis
 Provides analyst with ability to:

 Manage nugget components

 Manage alerts and events

▪ Consolidate events

▪ Add custom notes

▪ Set review flags

▪ Delete events

 Review system logs

How do they work together?

• Data is captured
• Metadata is generated (URL/filename)
• Checks a local cache of previously looked at

URLs and data signatures
• Uses an API to manage the initial file

evaluation and cache checks
• If further inspection necessary, API threads

out and ships the data off to the Dispatcher

• Tracks all nuggets in the system
• Finds the set of nuggets with the capability to

handle the incoming data type
• Routes incoming detection requests to that

set of nuggets
• Keeps track of metadata via an event id

• Processes data provided by the Data
Collectors, as instructed by the Dispatcher

• Data is portioned out to the respective
analysis thread able to analyze that data type

• Results of the analysis are sent back to the
dispatcher in the form of alerts

• Additional metadata may be sent

 Incoming alerts are associated with their
context data via the event id

 Information is stored in the database
 Portions of the capture data, namely, the

portion that triggered the alert, are stored
 Dispatcher notifies all output nuggets that it

has alert data to be retrieved

 Output Nugget receives notification that an
alert is available

 If interested, the output nugget informs the
dispatcher it would like to retrieve this alert

 Dispatcher forwards additional alert
information the output nugget

Data Collector

Dispatcher

Database

Web traffic

SMTP traffic

API

Check Resource
Query Database

Local Cache

Check cache

Data/

Metadata

Threads out

Dispatcher

Detection
Nugget

Detection
Nugget

Data type 1

Data type 2

Data type 3

Type 1 thread

Type 2 thread

Type 3 thread

Detection
NuggetDispatcher

Database

Detection Results/

more metadata

Alert and context data

Dispatcher

Output Nugget

Output Nugget

“I come bearing gifts”

“I come bearing gifts”

“No, thanks”

“Yes, please!”

Delicious Alert Data

 MD5 and size is stored for files and
subcomponents both bad and good

 Primarily this is used to avoid reprocessing
files and subcomponents we’ve already
looked at

 But after a update to any detection nugget,
all known-good entries are “tainted”

 After an update to
detection, previously
analyzed files may be
found to be bad

 We don’t rescan all
files

 But if we see a match
for md5 to a previous
file, we will alert
retroactively

What happens when an email is received?

 Client data collected by Snort-as-a-Collector
 Collected data sent to SMTP Detection

Nugget for separating MIME components
 MIME components are sent back through the

Dispatcher for further analysis

 Modified version of snort 2.8.6
 Uses snort’s protocol analyzers and stream

reassembler to grab session data and hand to
Dispatcher

 Dispatcher sends data to the SMTP Detection
Nugget

 Receives data from SaaC via the Dispatcher
 Extracts SMTP headers for metadata and

tracking information
 Separates all embedded MIME components

to be sent back to Dispatcher for further
analysis

 Collects alerts and sends them to the
Dispatcher for correlation

 In our example, an EXE file was attached to
email, resulting in data being sent to the
ClamAV detection nugget

 Receives input files, runs through ClamAV
 Alerts sent back to Dispatcher

 Receives notifications from Dispatcher that
alerts are available

 If interested in the type of alert, calls back to
Dispatcher for extended data

 Provides formatted alert data to SIM

Nuggets that are currently available. Many more to come, and you can help!

 Snort (up to four custom builds)

 SMTP mail stream capture

 Web file capture

 URL tracking

 Stream data capture on arbitrary ports

 Custom post-mortem debugger

 Traps applications as they crash

 Inserts the file that triggered the crash to Razorback

 Sends the metadata of the crash to the dispatcher

 PDF Parser
 Handle deobfuscation and normalization of

objects

 Potentially passing to Snort detection engine to
use the detection language

 JavaScript Analyzer
 Target known JavaScript attacks

 Search for shellcode in unencode blocks

 Look for heap-spray

 Look for obvious obfuscation possibilities

 Shellcode Analyzer

 Handle common techniques to find EIP

 Look for code blocks that unwrap shellcode

 Check for Windows function resolution

▪ Determine the function call

▪ Capture the arguments

 Provide alerts that include shellcode action

 Deep Alerting System

 Provide full logging output of all alerts

 Write out each component block

 Include normalized view of documents as well

 Maltego Interface

 Provide data transformations targeting the
Razorback database

 Snort rules updater
 ClamAV rules updater
 Triggered session storage via Daemonlogger

 CLI functionality to query:

 Alerts, events, and incidents

 Nugget status

 Display metadata

 Run standardized report set

How are nuggets created?

 Nuggets can be written via a provided API
 The API provides basic functionality for:

- registering a new nugget
- sending data to be analyzed
- sending alert data to be processed
- querying the cache/database

 API is written in C, but wrappers are available
for use with Ruby, Python, and Perl

 The API provides to the developer a set of
function calls passed as part of several C-
structures

 Existing APIs

 DetectionAPI

 CollectorAPI

 APIs for other nugget types forthcoming

 registerCollector()
 Register to Dispatcher

 Identify custom name and UUID representing application type

 checkResource()
 Checks given URI before sending data to be analyzed

 Function assigns an event UUID if none is provided

 sendData()
 Sends collected data for analysis

 Send-and-forget; dispatcher takes care of the rest

 sendMetaData()
 Metadata is handled like normal data

 Sent to a special nugget before being stored in the database

 registerHandler()
 Registers detection function to one or more data types

 Detection function must accept a data pointer and length

 sendAlert()
 Sends alert data to the dispatcher

 Links alert to event by event UUID

 Provides mechanisms for arbitrary and extensible alerting formats

 sendData()/sendMetaData()
 Identical to CollectorAPI counterparts

 Provides detection nuggets with the ability to have sub-data blocks
analyzed via the Dispatcher

 Nuggets can be written in Ruby, Python and
Perl

 Wrappers providing interfaces to the API
functions are provided

Let’s wrap this up!

 Completely modular architecture
 Each component has a highly specialized

function
 Complex functions are handled by routing

sub-blocks back through the Dispatcher
 The Dispatcher is the true heart of the

framework and is responsible for routing data
and alerts throughout the system

 Data Collector
 Detection
 Output
 Correlation
 Defense Update
 Workstation

 Core system is in C
 APIs provided for performing all interactions

with the Dispatcher
 If you can handle a data pointer and a size, all

you need to worry about is what you want to
detect!

 API Wrappers provided for Perl, Ruby, and
Python

 More collection nuggets needed!

 Additional protocols

 More detection nuggets needed!

 Additional file types

 More defense updater nuggets needed!

 Update more network devices

 More correlation nuggets needed!

 Are you great at data mining? We need you!

 Patrick Mullen

 pmullen@sourcefire.com

 phoogazi on Twitter

 Ryan Pentney

 rpentney@sourcefire.com

 Sourcefire VRT

 labs.snort.org

 vrt-sourcefire.blogspot.com

 VRT_Sourcefire on Twitter

