TOOLSMITHING AN IDA BRIDGE:
A TOOL BUILDING CASE STUDY

Adam Pridgen
Matt Wollenweber

Presentation Agenda

Motivation and Purpose

Toolsmithing

dentifying the short-cuts to meet project needs
Processes for Expediting Development

Prototyping, Modifying, Testing, Restart?!?
Extension development with WinDbg
ldabridge demonstration

Introductions: Adam

TODO Add pertinent Information
Who | am.
What | have done.

Where | am going.

Introductions: Matt

TODO Add pertinent Information
Who | am.
What | have done.

Where | am going.

Motivation and Purpose

Learn and teach methods for developing tools

Introduce toolsmithing to those interested in
tool development

Discuss what we learned from implementing
our tool

Release an Alpha version of our idabridge

Toolsmithing

Toolsmithing is the process of making tools
Tools can be in any space

Generally, not a standalone application

Ranges from short scripts to full blown libraries
Focus on utility not usability

Takes on the following forms
— X is needed to make Y create widgets
— Z needs to be built, but nothing exists currently

Toolsmithing Tools

High Level Languages (Python or Ruby)
HL Programming Environments (iPython)

Debuggers (PDB, WinDbg, Olly, etc.)
Network Sniffers for network debugging

Books and code lying around the home or net
Anything that gets the job done fast

Our Toolsmithing Process

Building is Believing

Loner Development Squads

The World is Big Chances are it exists
Don’t reinvent the wheel, steal one
KISS your tools they love you

Building is Believing

Good tools are not built overnight

— Sometimes maybe
Build it once to get an idea
Build it again because the 2" time shine

Third time is a charm

More than one implementation is likely
— idabridge’s cmd handling took 3 iterations

Build to what is needed now

Loner Development Squads

* Creating Milestones
— Milestones should aggregate into something
— Keep milestones small when developing alone
— Keep a friend (esp one who cares) on speed dial

* Writing concise and re-usable
— Think about what is being developed

— Make it abstract and re-usable
— Time is critical, if you can think of anything, just go

The World is Big...

Open Source is the best source for help

Code can be reviewed and repurposed

Existing code is fantastic for real-world examples
Documentation and APIs don’t run in debuggers
Implementing complex components

— Building a fuzzer, take someone elses protocol impl.
— Building a DNS Mapping tool, use BIND for the DNS

Introducing idabridge

Extensible network listener for IDA Pro
Gives IDA users a “remote control”
Implements a async. Network listener
Provides extensibility using a Python Class

Aims to be a middleware layer for other tools:
— Binary Diffing

— Debuggers

— Other frameworks such as Radare

Current State of Tings

Users are moving to “cloud” based solutions
Collaboration among analysts and users
Federation of data

— Moving data from whatever to wherever
Heterogenous tool chests and chains

Employers and contracts

— Cool tools are developed, but may not leave
closed environments

Goals and Challenges

Investigate cloud based reversing tools

Evaluate the feasibility for a middleware for
our current tools

Determine what tools will make a difference

Future direction for supporting technologies
— Cloud based Python Interpreter
— Migration of Binaries and environment for analysis

ldabridge Components

IDA Pro networking client
WinDbg network server
Python environment Exported from IDAPython

Command Handler for Debuggers and IDA Pro
— VDB/Vtrace

— WinDbg

— |DA Pro

Tools Used for Development

* Visual Studio for C/C++ on Windows

— Debugging a debugger?!?
— IDE

* iPython & Python
— Used to create scripts to write code and classes
— Functional code testing
— Data manipulation and verification
— Server mock-ups to test the initial cmd handling

Development Environments

* Windows 7, 64-bit
— VS 2010
— IPython

* Windows XP VM, 32-bit
— VS 2010

Overall Lessons Learned

* Debugging Debuggers

* Write Scripts to Implement code
— Parsing IDAPython APIs
— Implementing Python Command Handlers
— Writing Long Logic C++ Statements
— Creating Stub Functions

Toolsmithing: Research Phase

Initial Research and Development: 90 Hours

— Researching code and capabilities (IDA Pro and WinDbg)
— Learning APIs and how to use them

— Planning, Testing, Adjusting

— Includes Coding and Testing

Created a GUI to simulate a debugger

Implemented IDA Commands Manually Using C++ only
Implemented Separate Command Handling on Platforms
Mostly “Get it working phase”

Toolsmithing: Research Phase

* Lessons Learned
— Write scripts to write code and functions
— Wrote a “dumb” server to send and reply to msg.s
— Documentation is not your friend find examples
— Find examples that have been repeated

Toolsmithing: Phase 2

Defcon Talk accepted, resumed development

Development: 60 Hours (2 weeks)
— Developed an Abstract Cmd Handler Based on Names

— Included Typed Argument Marshaling (str, int, long,
byte)

— Combined the Network Stack and Handling
Never tested and threw out most of the code
Realized atm there was no added value
Breakthrough was the command handling

Combined source and functionality

Toolsmithing: Cmd Handler

* Development: 30 Hours (1.5 weeks)

— Developed the abstract handler
— Added IDAPython Bridge to the mix

* Figured out how to add IDA Python Bridging

Toolsmithing: Cmd Handler

* Development: 20 Hours

— Added Python as the Main Command Handling
— Co-Developed Vtrace/VDB command handling

Conclusions

Creativity, Patience, Persistence, and Tenacity
Motivation relies on small milestones
Expectations are limited by time frame

Tool Code quality != production CQ

<FINAL PROJECT Data>

ldabridge information

e Special Thanks To:
— Praetorian
— C. Eagle and T. Vidas for Collabreate
— E. Erdelyi for IDAPython
— Pusscat / LinOxx for Byakugan

e Code URL

* Presentation URL

http://tbd/
http://tbd/

Questions & Comments

— Adam.pridgen@| thecoverofnight.com | |
praetorian.com]

— mjw@cyberwart.com

