
Improving Antivirus Accuracy

with Hypervisor Assisted

Analysis

Danny QuistDanny Quist

Offensive Computing, LLC

dquist@offensivecomputing.net

Twitter: ocomputing

Danny Quist

� Reverse engineer

� Automated reverse engineering

� Unpacker of strange malware

� RE Training Course

� Founder Offensive Computing

� Largest open collection of malware

� Blog with research (when able)

� Ph.D. New Mexico Tech, 2010

Overview

� Complexities of reverse engineering

� Discussion of malware detection problem

� The commercial antivirus industry

� Hypervisors and Reverse Engineering

� Improving AV scanning results

Complexities of Reverse Engineering

� Most malware is compiled Intel x86 Assembly code

Compiler

• Machine code is more
complex

• Optimizations make

C Code – 45 lines Relevant Assembly Code

• Optimizations make
analysis more difficult

•Total code size is 1,200
instructions

• 118 Relevant assembly
instructions

• Much of machine code is
compiler boiler plate

Reverse Engineering

Complexities of Reverse Engineering

� Executables can be obfuscated

Packing /
Obfuscations

Compiler

Information Loss - (Comments, Variable Names, Original Structure of CodeInformation Loss - (Comments, Variable Names, Original Structure of Code

Commercial Antivirus

� Limited by time and resources
� Customers get annoyed if results take too long

� If AV is too invasive, software is uninstalled

� Example: Symantec Endpoint Protection 11 has 14 kernel mode
modules that are loaded

� Signatures heavily favored by Vendors
� Fast and easy to implement

� Decoders, as long as they are fast, used for known obfuscations

� Time is AV’s achilles heel.

� Detection of new, unknown threats is only 45%

Malware Authors Have an Easy Life

� Slight modifications yield zero detection

� Modify the icons inside the PE files

� Remove imports

� Slight modification of code

� Most common exploit kits sold for N iterations of AV

� Guaranteed not detectable

� Provides a funding source on detection

� Generic deobfuscation is not possible for AV vendors

Types of Packers

UPX

ASPack

FSG

PeCompact

ASProtect

PEtite

tElock

MEW 11 SE

WinRAR 32-bit SFX Module

Borland C++ DLL

yoda's Protector

NeoLite

Xtreme-ProtectorXtreme-Protector

LCC Win32

Themida -> Oreans Technologies
2004
MinGW

Ste@lth PE 1.01 -> BGCorp

Armadillo

TASM / MASM

PECompact

PE Pack

PKLITE32 1.1 -> PKWARE Inc.

PKLITE32

UPX-Scrambler RC

Wise Installer Stub

SVK Protector

CodeSafe

WinZip 32-bit SFX

PEiD scanning results from 1.6 million samples from Offensive Computing

UPX

ASPack

FSG

Unpacking: The Generic Algorithm

0x401000
0x401002
0x401008
0x401010
0x401094
0x401098

Written Memory

0x509003
0x380303
0x380290
0x313370
0x31337B
0x401339

Is EIP Writing
Memory? If yes, log it

0x401098 0x401339

Is EIP a
Previously

Written Address?

Yes

Trigger
Unpacking
Process

• Need a system to track:

• Memory writes
• Executed memory addresses

• Differences among solutions
• Monitoring implementation
•Variances in this algorithm

Related Work – Improving Antivirus

Accuracy

� Automated unpacking system performance can be
measured based on antivirus detection performance

� Polyunpack, Renovo, Ether
� Automated unpacking systems

� Monitor memory writes, flag on execution of written data

� Josse
� QEMU virtual machine used for analysis (detectable)

� Instruction level resolution executable monitoring

� Emulation makes analysis slow

� Repair mechanisms of each of system primitive or non-
existent

Improving Antivirus Accuracy with

Hypervisor Assisted Analysis

� Contributions

� Improved unpacking technique leveraging Ether hypervisor
system

� Better import rebuilding using kernel data structures

� Better OEP detection from stack back-tracking technique

� Antivirus scanning performance improved

Ether System Architecture

Ether Analysis System

Linux Dom0
Instrumented

Windows XP SP2

Xen Hypervisor with Ether Extensions
Ring -1

Intel x86-64 CPU with Hardware Virtualization

Linux Dom0
Management OS

VM Disk
Images

Ether
Mgmt
Tools

Windows XP SP2
Virtual Machine

Importance of Repairs

� Viruses can be packed and avoid detection

� Removing imported APIs takes data away from analysis engines

� Original Entry Point (OEP) Detection hasn’t progressed in
years

� Watch for all written memory, log into a hash table

� If there is an execution in written memory guessed to be OEP� If there is an execution in written memory guessed to be OEP

� Dump contents of memory

� Problems

� Multiple obfuscations

� Staged unpacking

� Lots of candidate OEPs

� Restoring this information improves existing AV tools accuracy

Imported API Recovery

� Removing Imported APIs is first obfuscation step

� Reverse engineering is difficult without APIs

� Provide no context for code

� Order of magnitude increase in complexity

� Restoring them is extremely valuable

Which is easier to read?

No Imports

Which is easier to read?

No Imports Imports Rebuilt

Import Repair Process

� Find the original entry point

� Unpack code until this address is found

� Use OEP method discussed later

� Find references to imported DLLs

� call [ADDRESS]

� jmp [ADDRESS]

Import Address Table (IAT)

Import Repair Process

� Each imported DLL has an IAT corresponding to the APIs
brought into the application

� The first DLL is found by backtracking the IAT memory
until a NULL is found.

� The DWORD after the NULL is the beginning of that
DLL’s API

� How do we determine which DLL belongs to which
memory address?

Determining DLL Address Space

� Old Method
� Attach to process via debugger interface

� Call windows APIs to query address module

� Resolve addresses from the DLL listings

� Problems
� Hypervisor has no access to internal Windows APIs

� Access to APIs would violate sterility of guest environment
(DETECTION)

� No real way to extract data we need

Import Repair Process

� New Method – Use kernel memory management data
structure

� Virtual Address Descriptor –VAD

� Each process has a VAD to describe memory usage

� OS uses VADs to interact with CPU MMU

� Very accurate use of process space

� Balanced Binary Tree

� Address space

� Size of memory region

� Execution flags

� Module memory mapping

This is all the information
needed to rebuild imports

Executable Memory Space
R
in

g-
0
 A

d
d
re

ss
 S

p
ac

e

0x80000000

Process VAD Tree

ImageBase

ADVAPI32.dll

WS2_32.DLL.Data

KERNEL32.DLL

Process Virtual Address Descriptor Tree

0x7FFFFFFF

0x80000000

0x00000000

PEB (FS:30)

WS2_32.DLL

KERNEL32.DLL

ImageBase

…

ADVAPI32.dll

ImageBase

KERNEL32.DLL

R
in

g-
3
 A

d
d
re

ss
 S

p
ac

e

Original Entry Point Detection

� Standard OEP discovery
produces many file

� Most common packers
produce few samples

Packer Detected OEPs

Armadillo 1

Petite 1

UPX 1

UPX Scrambler 1

Aspack 2

� Complex packers increase
complexity of unpacking

� Requires manual analysis
of each candidate dump

FSG 2

PECompact 2

VMProtect 12

PEPack 12

AsProtect 15

Themida 33

Yoda 43

PEX 133

MEW 1018

OEP Algorithm – EBP based stack frames

RET: 0x59009538

Stack Data

RET: 0x59010030

Stack Data
….

push ebp
mov ebp, esp
sub esp, 6A58h
xor eax, eax

2. Unwind
stack until
no more
frames
found

OEP

RET: 0x59009500

Stack Data
….

RET: 0x59009530

Stack Data
….

Stack Data
….

xor eax, eax
mov edx, 0x43
shl edx, 32
mov ecx, 0xBE
shl ecx,
mov eax 0xEF9ECA4E
xor eax, 0x313374A1
call eax

1. Start at EBP

3.
Backtrack
assembly to
the
beginning of
code /
preamble

Testing and Analysis

� Verification of malicious file

� Execution – show that it runs without crashing

� OS state change – Look for modifications to

� Registry

� File system� File system

� Startup systems

� Verification of maliciousness

� Detection by at least 1 AV scanner

� Good way to scan large sample sets of malware

Test 1: Linux Virus Scanners

� Analyze 500,000 samples for samples that are detected by
one AV vendor

� Randomly choose 1,000 samples

Apply verification method, 697 left over� Apply verification method, 697 left over

� Results

� Highest 45.23%

� Average 19.86%

� Lowest 0.68%

Test 2: Virus Total

� Virus Total (VT) –Website by Hispasec that aggregates 40
AV scanners’ testing results.

� Two weeks passed to allow for improved AV signature
development

� Apply verification method, 1,195 left over

� Results
� Highest 11.54%

� Average 7.37%

� Lowest 1.70%

Test 2: Improvement of Scanners

Best: 11.54%
Average 7.37%
Lowest 1.70%

Test 2: Total Detection Percentages

• High value improvements to most AV vendors
• Low improvement means either deobfuscation is poor, or detection is poor
• Blue represents packed, red represents unpacked state

Improving AV Conclusions

� Unpacking and deobfuscation are high value changes

� In development to incorporate into line-speed e-mail scanner

� Improved detection of slightly modified malware

� Rebuilding of imports

� Improves reverse engineering

� Full recovery of import data

� VAD is fundamental part of OS (hard to deceive)

� Improved OEP Detection

� Reduces multiple OEP candidates

� Reduced analysis time

� Improvement in AV scanning results

Improving AV Future Work

� Unpacking process takes too long

� Current method is to unpack for 5 minutes

� Better algorithms can be found to determine if unpacking
works

� Integration with existing tools

IDA Pro� IDA Pro

� OllyDbg

� WinDbg

� Build full-fledged debugger

� PDB / Paimei integration

� Visual control of unpacking

Questions?

� Contact Information

� Danny Quist

Email: dquist@offensivecomputing.netEmail: dquist@offensivecomputing.net
Twitter: Ocomputing

