
Go Go Gadget Python

Nick Waite Furkan Cayçı

Hardware for software people

• Gadgets are cool

• Writing drivers is not so easy

– Usually done in C

– Requires knowledge of low-level interfaces

– Can easily crash your box

• Many devices do not need compiled drivers

– Low data rates

– libUSB and other abstraction layers

• Is there a way to “rapid prototype” drivers?

– Fast, easy, fun

– Cross-platform would be nice

Python

• A very handy scripting language

• Modules for almost everything

• Even hardware…

– Pyserial

– Pyparallel

– PyUSB

• Looks like a winner!

Today’s Menu

USB Serial

The Serial Port

• Electrical

– Full-duplex

– Hardware flow control (often not used)

– [0] + [n]*n_bits + [1]

– 0 = -3 to -15 volts, 1= 3 to 15 volts

• Mechanical

– DB-25, DE-9

• Often a USB device pretending to be serial port

Handshaking and cables

• Will add graphics later

– Much of the confusion in serial land revolves
around flow control and what kind to use

• True hardware flow control
– Fake local loopback flow control

• Software flow control (XON/XOFF)

• No flow control (most common nowadays)

– DCE/DTE – which side are you?

• Null modem cables

Serial in python

• It’s easy (mostly)

• There are some gotchas, however

>>> import serial

>>> s = serial.Serial('/dev/ttyS1', 9600)

>>> s.write("hello")

>>> print s.readline()

>>> s.close()

On actually using pySerial

• There are subtle issues with pyserial’s use in
robust driver code

– Timeouts

– Flow control

– Buffering

– Alternating reads & writes

• Flush ports!

• TO BE COMPLETED LATER

Actual gadgets

• Demo showing actual code

• Demo sniffing serial transactions with special
cable?

USB

• A great example of a forward looking standard

– Since 1996, still backward compatible!

• Really is the universal bus

– Ever seen a PS/2 fondue pot?

– mmmm….cheese

• Practically, most cool gadgets
you will want to reverse-engineer are USB

– Many will be HID-class

USB made complicated

• A Device has

– Configuration(s)
which have

• Interface(s),
which have

– Endpoint(s)

• Or, there’s HID

– Decisions, decisions…

USB made simple

• Real USB devices are usually HID

– Don’t need an OS driver

• If not, then they usually have

– 1 configuration, with

• 1 interface, with
– 1 endpoint

– Sometimes 2 (Biopac MP35)

• Sometimes they’re a fake serial port

PyUSB

• Python wrapper for 3 USB libraries:

openUSB, libUSB 0.x, libUSB 1.0

– Autodetects which is installed

– I use libUSB 1.0 for best windows compatibility

• Procedure:

1. Find device

2. Set interface

3. Read & write to your heart’s content

4. Close (if you don’t want python to do it)

USB missile launcher example

import usb.core, usb.util

usb_device = usb.core.find(idVendor = 0x1941, idProduct = 0x8021)

if not usb_device:

raise usb.core.USBError('USB missile not detected')

usb_device.set_configuration()

status = usb_device.read(0x81, 8)

Types of transfers

• Bulk / Interrupt

– The usual type for bulk data

• Isochronous

– For things that must be on time (won’t discuss)

• Control

– For control messages, config stuff

– Just a bulk transfer to endpoint 0x0,
with some extra data fields

– For HID devices, this is how you write to them!

PyUSB commands

• FILL IN LATER

Reverse-Engineering USB

• Some companies don’t really want you
to fully enjoy your hardware

– Windows-only?

– Crappy drivers?

– Too bad!

• That’s OK, we’ll make our own in python

– But how to reverse the traffic?

• First, we must sniff

Sniff USB

• Old & krunky

• But it outputs a text log file

• Python scripts to post-process

– Eliminating useless cruft

– Translating hex codes to opcodes

– Scraping hex blocks into binary files for replay
attacks or hex-editing

• After processing, output corresponds to
pyUSB function calls!

Sniffing demo

Specific Examples

• Biopac MP35 was tough

– Two separate drivers required

• Stage 1: Cypress EZ-USB chip with soft firmware
– Sent with control transfers

• re-enumerates as new device!

• Stage 2: TI DSP chip with soft firmware
– Firmware sent to endpoint 1

– Actual operation done through endpoint 2

– Approximately 60 different commands, many modes

– Lots of custom python code for that one

Specific Examples

• Dream Cheeky USB missile launcher

– The code’s already online,
but it made good practice

– HID class device

• Control motors with control transfers

• Read limit switch status with bulk read

• From zero to rough driver in about 30 minutes

The recap

• Python makes it fast and easy to do serious
hardware control for serial & usb devices

• Sniffing & reverse-engineering USB
isn’t very hard

• Did we say python is cool?

• The scripts we use for USB sniffing & log
cleanup are going to be online at:
http://www.cvorg.ece.udel.edu/

http://www.cvorg.ece.udel.edu/

