
Alberto Garcia Illera

(@algillera)

Javier Vazquez Vidal

(@bi0h4z4rd_)

Javier Vázquez Vidal

• Hardware security specialist

• Loves breaking “toys” security

• Freelance

• From Cádiz

Alberto García Illera

Index

• Hacking of the ECU

• Do a forensic job after a car crash

Why did this happen?

• A friend kept bugging me to constantly change the tuning

file on his car every week

• I felt like

What did we do?

• Use Google

It didn´t work, so we needed a plan

Vehicle Electronic Control Units

Vehicle Electronic Control Units

• Each ECU has an unique ID (address) in the

network.

• They have authentication/encryption protection

against non authorised (dealer) access.

• Data is usually stored in them for

diagnose/foresinc purposes, aswell as for car

behaviour (configuration).

Vehicle communication protocols

Why was K-Line the chosen one?

• Can be implemented with a single level shifter IC

• Present in most cars (<2010)

• Older ECU´s (K-Line+CAN) are cheaper than

newer ones (CAN only)

• It´s suitable for lazy developers (Yay!)

Is it easy to implement CANbus support?

• We have already done it, but the beta tool is not yet ready

for showcase.

• CANbus and K-Line are just protocols, but the encryption,

auth and all other security features are the same on both,

and not specific to CANbus.

• It makes the tool $10 more expensive

First steps

• What did we know about ECU´s:

• They are expensive

• They live inside cars (no wild ECU´s have been spotted so far)

• Options we had:

• Navigate through tecnical docs until we could understand how it works

• Hook up the LA and try to figure out

• Both of the previous answers are correct

So, this is what we found about engine

ECU´s

• Responsible for engine management

• Stores all engine faults

• Holds immobilizer routines

• Contains firmware that affects the behaviour of the car

So, this is what we found about engine

ECU´s

• Target Hardware is composed of:

• Internal/External Flash

• Internal/External EEPROM

• A really annoying black rubber-like epoxy

What did the LA show?

What did we do about it?

• Tried replay attack with the following result:

What we realised (after a while)

• They have the following “features”:

• EDC15/ME7xx:

• Seed/Key Algorithm for auth (Unique)

• Checksum!

• They require a loader for operations

• EDC16/MED9xx:

• Seed/Key Algorithm for Auth (3 Levels)

• RSA Encryption

• Checksum!

How did we do it?

Why is it interesting?

• Would you like to spend less money on gas?

• Did you know that the difference between the 100PS and

the 130PS version of your car is just some changes in the

ECU firmware?

• Would you like to be able to repair a faulty ECU in your

car using inexpensive hardware?

• It´s cool to hack your car with cheap hardware!

What does the ECU tool code look like?

• Due to the limitations of the selected MCU (Atmega

328p), code had to be carefully structured not to run out of

RAM (2kb).

• EDC15 and EDC16 firmwares are composed of ~1800

lines of code each.

• We are already working on an universal firmware that will

be able to handle all type of ECU´s on a single 328p and

add support for future ones without requiring a firmware

update.

Bosch EDC15

EEPRO

M

MCU

FLASH

EDC15 Auth

BOSCH EDC16

MCU+EEPROM+INT.FLASH

EXT. FLASH

JTAG(BDM)

EDC16 LVL1 Auth

EDC16 LVL3 Auth

RSA encryption

• EDC16 requires uploaded files to be encrypted with RSA

RSA encryption in the tool

• Encryption is coded in “ASM” instructions (Yes, i am that

lazy!)

• It takes approx. 10 seconds to encode 512kB

• It is done before starting the ECU init, and checksum for

the file is calculated at the same time

EDC16 Encryption algorithm

Other Existing tools

• They all require connection to a PC

• Examples of popular tools:

• MAGPRO2 BASE kit: $2300

• CMD Flash Master OBD: $5500

• MPPS Master OBD tool: $1500

So now that we know all this….

ECU tool hardware

• 1x Arduino mini pro (MCU) - $3.17

• 1x SI9241/MC33290 (ISO-9141 level converter) - $3.

• 1x LM7805 (Voltage regulator) - $0.99

• 1x i2C 20x4 LCD - $9.53

• 4x Push button+resistors - $1.5

• 1x RJ-45 Female connector - $0.99

• 1x OBD2 Connector - $0.99

• 1mt Cat-5/6E Ethernet cable - $1

• 1x RJ-45 male connector -$0.1

• 1x SD card Breakout board+2GB SD card (FAT16 or 32) - $3

• 1x Plastic case - $2

Total: $26,27

Ecu tool features

• It is not locked to a single vehicle

• It stores non encrypted files

• It does not use master/slave role

• It can be used as sniffer (with special fw)

• It is easy to add support for additional functions

(diagnostics, programming…) or aditional ECU units

(airbag, ABS, locks…)

Lower Interface side (Beta)

Upper Interface side (Beta)

Interface board (Eagle)

Wireless interface (BT)

Examples of use

• Mod ECU fw to have more hp/ less gas expenses:

• Connect tool via OBD2 connector

• Download original file from ECU

• Modify file on PC with desired sw or get it done by a tuner

• Place the file in the correct folder

• Upload tuned file to ECU via OBD2 connector

• *You can always revert from mod to original in less than 1

minute, and go back to mod file as many times as you want

Examples of use

• Bypass immo (EDC15): It is based on a patch on the

EEPROM.

• Plug the tool via OBD2 connector

• Select the “Disable IMMO” option

• You can now hotwire the target car or use the ECU on other cars

:D

• *You can always enable/disable immo easily with the menu

Examples of use

• Disable a car:

• Connect the tool via OBD2 connector

• Select “Write file to flash”

• Pull cable from OBD2 connector before operation is finished (will

cause wrong checksum)

• Cool, now the target car is an expensive piece of metal!

• *You can later recover the ECU with the automatic recovery mode

for both EDC15 and EDC16 via OBD2

Example (creepy) of use

• If we have phisical access to a car we would be able to

place a mini device in the ODB port with 3G and control

remotelly the car

• This is a very dangerous use but could be done

• A bad guy could bring out an accident doing that the

driver lost the control of his own car

Demo on EDC16

• Read info

• Read flash

• Disable the ECU

• Try to read the info again (will fail)

• Recover the ECU

• Read info on recovered ECU

Demo worked!!!

• Touch my heart, I’m still excited!!

What was the reason? Forensics

Related information

• Most of the cars from 1994 have a Crash Date Retrieval

(CDR) function that stores the info of a crash

• It’s similar than a Black Box used in the airplanes

• Stores information before and after the crash

• This info is related with speed, RPM, brake use, ABS

activity, accelerator pedal position (%)…

Where is the data?

• Almost all the cars store the crash data in the airbag ECU

• Usually this info is stored in a EEPROM (non volatile)

memory

• There is costly hardware and software that must be used

to retrieve and interpretate this information

The official hardware

• There is a official and expensive hardware/software from

BOSCH to extract and parse the infomation

• There are three ways to connect the hardware with the

Airbag ECU to retrieve the information:

• Connecting to the ODB port (Authentication required)

• Connecting with the airbag module (Authentication required)

• Read directly the EEPROM memory (No authentication required)

How to extract the data of a ECU?

• The software/hardware to use in the BOSCH ECU is

called CDR

• The “CDR Premium Tool Hardware Kit” costs $8999

What about poor guys?

• The software can be downloaded totally free

• So the code about parsing the data it’s just in front of us…

Supported Vehicles

Once upon a time

• A client contacted us to do a forensic job into a car that

was not supported by the CDR tool (Mercedes)

• Our face was:

What we do

• We did it in the cool way: reading directlly from the

EEPROM memory

What’s next?

• We retreived all the information stored in the EEPROM

memory but we didn’t have a way (with his wife) to parse

it because the CDR program does not support Mercedes

• So, we use a tool to reset the crash file data and doing

after that a bindiff

• Doing this we knew what parts of the binary had changed

and so we knew these parts of the full binary contains info

of the crash

…

• The next step to do with the already filtered data was looking

for the speed of the car at the moment of the crash

• To do this we used WinOLS to view the graphs and be able

to distinguish between the crescent and descrescent graphs

• The sorting was made because the speed in a car crash is

always descrecent

We had a match!!

• After doing this we found a interval with values that could

match with the speed in a car crash

Thank you

• All of you for being here today

• To our family and friends. They are always there were we
need them

• All those who want to understand how and why things
work

• Alberto Garcia Illera (@algillera)

agarciaillera@gmail.com

• Javier Vazquez Vidal (@fjvva)

javier.vazquez.vidal@gmail.com

