
Revealing Embedded Fingerprints:
Deriving intelligence from USB stack
interactions
 Andy Davis, Research Director NCC Group

Image from: p1fran.com

UK Offices
Manchester - Head Office

Cheltenham

Edinburgh

Leatherhead

London

Thame

North American Offices
San Francisco

Atlanta

New York

Seattle

Australian Offices
Sydney

European Offices
Amsterdam - Netherlands

Munich – Germany

Zurich - Switzerland

Agenda

Part One:
• Overview of the USB enumeration phase
• Different USB stack implementations
• USB testing platform
• Installed drivers and supported devices
• Fingerprinting USB stacks and OS versions

Part Two:
• The Windows 8 RNDIS kernel pool overflow
• Challenges faced when exploiting USB bugs
• Conclusions

Part One: Information gathering

• Why do we care?

• If you connect to a device surely you already know the platform?

• Embedded devices are mostly based on Linux anyway aren't they?

• May provide information useful for other attacks

USB Background stuff

Image from: blog.brickhousesecurity.com

Overview of the USB enumeration phase

• What is enumeration for?
• Assign an address

• Speed of communication

• Power requirements

• Configuration options

• Device descriptions

• Class drivers

• Lots of information exchange – implemented in many different ways

Image from :http://ewalk2.blog117.fc2.com

The USB enumeration phase

Enumeration phase peculiarities

• Why is the device descriptor initially requested twice?

• Why are there multiple requests for other descriptors?

• Class-specific descriptors:

Different USB stack implementations

• Typical components of a USB stack

• Windows USB driver stack

• Linux USB stack

• Embedded Access USB stack

Image from: blogs.msdn.com

Typical components of a USB stack

• Host Controller hardware

• USB System software:
• Host Controller Driver – Hardware Abstraction Layer

• USB Driver

• Class drivers

• Application software

Image from: www.wired.com

Windows USB driver stack

Image from: msdn.microsoft.com

Linux USB stack

Image from: www.linux-usb.org

Embedded Access USB stack

Image from: www.embedded-access.com

Interacting with USB

Image from: www.nvish.com

USB interaction requirements

• Need to capture and replay USB traffic

• Full control of generated traffic

• Class decoders extremely useful

• Support for Low/High/Full speed required

• USB 3.0 a bonus

USB testing – gold-plated solution

• Commercial test equipment

USB testing – the cheaper approach

• Facedancer (http://goodfet.sourceforge.net/hardware/facedancer21)

Best solution: A combination of both

• Device data can be carefully crafted
• Host response data can be captured
• Microsecond timing is also recorded
• All class-specific data is decoded

Information enumeration

Image from: network.nature.com

Target list

• Windows 8

• Ubuntu Linux 12.04 LTS

• Apple OS X Lion
• FreeBSD 5.3

• Chrome OS

• Linux-based TV STB

Installed drivers and supported devices

• Enumerating supported class types – standard USB drivers

• Enumerating all installed drivers

• Other devices already connected

Enumerating supported class types

Where is USB class information stored?

Device Descriptor

Interface Descriptor

Installed drivers and supported devices

• Drivers are referenced by class (Device and Interface descriptors)

• Also, by VID and PID:

• For each device class VID and PID values can be brute-forced
(can easily be scripted using Facedancer)

• Valid PIDs and VIDs are available (http://www.linux-usb.org/usb.ids)

Enumerating installed drivers

Not installed:

All communication stops
after “Set Configuration”

Installed:

Sniffing the bus - Other connected devices

• Data from other devices will be displayed on other addresses

Fingerprinting USB stacks and OS versions

• Descriptor request patterns

• Timing information

• Descriptor types requested

• Responses to invalid data

• Order of Descriptor requests

Matching req. patterns to known stacks

Linux-based TV STB Windows 8

Request patterns unique elements?

• Windows 8 (HID) – Three Get Configuration descriptor requests (others have two)
• Apple OS X Lion (HID) – Set Feature request right after Set Configuration
• FreeBSD 5.3 (HID) – Get Status request right before Set Configuration
• Linux-based TV STB (Mass Storage) – Order of class-specific requests

Timing information

Timing information

Using timing for fingerprinting?

• Large amount of variance over entire enumeration phase:
• 4.055s, 3.834s, 3.612s, 3.403s, 3.089s

• Much greater accuracy between specific requests:
• Between String Descriptor #0 and #2 requests - 5002us, 5003us, 5003us, 4999us, 5001us

• If we know the OS we can potentially determine the processor speed

Descriptor types requested

• Microsoft OS Descriptors (MOD)

• Used for “unusual” devices classes

• Devices that support Microsoft OS Descriptors must store a special USB string
descriptor in firmware at the fixed string index of 0xEE. The request is:

• If a device does not contain a valid string descriptor at index 0xEE, it must respond
with a stall packet. If the device does not respond with a stall packet, the system will
issue a single-ended zero reset packet to the device, to help it recover from its stalled
state (Windows XP only).

Responses to invalid data

• Different USB stacks respond to invalid
data in different ways

• Maximum and minimum values

• Logically incorrect values

• Missing data

Image from: windows7.iyogi.com

Invalid data unique elements?
Windows 8 (all versions)

If you send a specific, logically incorrect HID Report descriptor this happens:

Invalid data unique elements?
Windows 8 (all versions)

If you send a specific, logically incorrect HID Report descriptor this happens:

Order of Descriptor requests

• Some USB stacks request data from devices in a different order

• Different drivers may request different descriptors multiple times

• Sometimes Device descriptors are re-requested after enumeration is complete

Part Two: Potentially exploitable
USB bugs

Image from: www.biro-media.hr

The Windows 8 RNDIS kernel pool overflow
• MS13-027

• usb8023x.sys - default (Microsoft-signed) Windows Remote NDIS driver that
provides network connectivity over USB.

• When a USB device that uses this driver is inserted into a Windows host, during the
enumeration phase the USB Configuration descriptor is requested and parsed

• When the following USB descriptor field is manipulated a Bug check occurs
indicating a kernel pool overwrite:

• Configuration descriptor --> bNumInterfaces field > actual number of USB interfaces

The field is “bNumInterfaces” in Table A2: USB Configuration Descriptor
(http://msdn.microsoft.com/en-us/windows/hardware/gg463298)

The Bug Check
BAD_POOL_HEADER (19)
The pool is already corrupt at the time of the current request.

<Truncated for brevity>

Arguments:
Arg1: 00000020, a pool block header size is corrupt.
Arg2: 83e38610, The pool entry we were looking for within the page.
Arg3: 83e38690, The next pool entry.
Arg4: 08100008, (reserved)

<Truncated for brevity>

WARNING: SystemResourcesList->Flink chain invalid. Resource may be
corrupted, or already deleted.

WARNING: SystemResourcesList->Blink chain invalid. Resource may be
corrupted, or already deleted.

SYMBOL_NAME: usb8023x!SelectConfiguration+1bd

The SelectConfiguration() function

The crash point

Analysis #1

When bNumInterfaces = 3 (one more than it should be) and bNumEndpoints = 2
(valid value)

Next kernel pool:

849c3b28 10 00 0a 04 56 61 64 6c-6b 8f 94 85 28 8c 90 85 Vadlk...(...

becomes:

849c3b28 00 00 0a 04 56 61 64 6c-6b 8f 94 85 28 8c 90 85 Vadlk...(...

So we’re overwriting "PreviousSize" in the next nt!_POOL_HEADER - this is what
triggered the original Bug Check when ExFreePool() is called

Analysis #2

When bNumInterfaces = 3 (one more than it should be) and bNumEndpoints = 5
(three more than it should be)

Next kernel pool:

84064740 17 00 03 00 46 72 65 65-48 2d 09 84 30 a8 17 84 FreeH-..0...

becomes:

84064740 17 00 03 00 00 72 65 65-48 2d 09 84 30 a8 17 84 reeH-..0...

So we’re now overwriting "PoolTag" in the next nt!_POOL_HEADER

What’s going on?
kd> dt nt!_POOL_HEADER

– +0x000 PreviousSize : Pos 0, 8 Bits

– +0x000 PoolIndex : Pos 8, 8 Bits

– +0x000 BlockSize : Pos 16, 8 Bits

– +0x000 PoolType : Pos 24, 8 Bits

– +0x004 PoolTag : Uint4B

– +0x008 ProcessBilled : Ptr64 _EPROCESS

By manipulating bNumInterfaces and bNumEndpoints in a USB Configuration
descriptor we appear to have a degree of control over where in the next adjacent
kernel memory pool I can overwrite a single byte with a null (the null write occurs four
bytes after the end of the pool I control and I can also control its size and some
elements of its contents so could also potentially overwrite the next pool header with
something useful)

Some pseudo code

Challenges faced when exploiting USB bugs

• Lack of feedback channel

• The bug is often in kernel code

• Descriptors are generally very size-constrained

• Typical impact of USB exploitation typically restricted to privilege escalation

• What about USB over RDP?

Image from: leadershipfreak.wordpress.com

Conclusions

• The USB enumeration phase reveals useful information for fingerprinting

• Class-specific communication is potentially even more revealing

• Even vendors with mature SDL processes have USB bugs

• USB bugs can potentially be exploited, to provide privilege escalation

• …but it is extremely difficult to achieve reliably

Questions?

Andy Davis, Research Director NCC Group

andy.davis ‘at’ nccgroup ‘dot’ com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

