
ACL Steganography:
Permissions to Hide Your Porn
by Michael Perklin

Michael Perklin
BaISc, MSIA, CISSP, EnCE, ACE

Security Professional

Corporate Investigator (Cyber-Crime)

Digital Forensic Examiner

Computer Geek + Legal Support hybrid

In This Talk...

What is Steganography?

Historical examples of physical and digital forms

How do they work?

ACL Steganography - a new scheme

Demo

How It Works

What Is Steganography?

Greek origin and means "concealed writing"

steganos (στεγανός) meaning
"covered or protected"

graphei (γραφή) meaning "writing"

The term was first coined in 1499, but there are
many earlier examples

Basically, hiding something in plain sight

Classical Examples

Classical Example: Tattoo

Tattoo under hair

Encoder tattoos a slave’s scalp

Decoder shaves the messenger’s hair

Problem: The message must be
delayed to allow time for hair regrowth

Also...

Tattoos Are Permanent

Oops

Classical Example: Morse

Stitch morse code into a sweater/jacket worn by a
messenger

Messenger hand-delivers one message while actually
delivering two

Classical Example:
Invisible Ink

Write secrets with lemon juice

Allow to dry

Decode with heat
(candle, match, hair dryer, iron)

Decode With Heat

Digital Steganographic
Methods

Digital Example: Photos

Files can be encoded as colour
information embedded in a
photo

Most common type of digital
steganography

Based on the fact that only
super-humans can tell the
difference between
Chartreuse and Lemon

Photo Steganography

Each pixel is assigned a colour with an RGB colour code

The last bit of this 8-bit code is overwritten with encoded
data

#DFFF00 is chartreuse

#DFFF01 is.... one of the yellows

8 adjacent pixels with 8 slightly-adjusted colours allows
1 byte of encoded information

Audio Steganography

Same principle as photographic steganography, but
with audio

Humans can’t easily tell the difference between
400hz and 401hz, especially if the note isn’t sustained

Alter each frame of audio with 1 bit of encoded
information

Digital Example: x86 Ops

Information can be encoded in x86 op codes

NOP - No Operation

ADD / SUB - Addition and Subtraction

PE files (standard .exe programs) have many other
areas that can hold arbitrary data

Digital Example:
Chaffing and Winnowing

Conceived by Ron Rivest in 1998 (the R in RSA, as well
as RC4 and others)

Not quite steganography

Not quite encryption

Has properties of both stego and encryption

Chaffing and Winnowing

Sender issues ‘real’ messages and ‘chaff’ messages

Listeners don’t know which messages are real

Real chunks of the message pass a parity check

Message Authentication Code (MAC)

Receiver calculates MACs on every packet

Discards packets whose MACs aren’t valid

Reassembles all packets with valid MACs

Chaffing and Winnowing

Courtesy: Wikimedia Commons

Steganography Breakdown

All types of steganography require three things:

A medium of arbitrary information

A key or legend for encoding information

A way to differentiate ‘encoded’ and ‘medium’ info

ACL Steganography

A way to encode files as Access Control Entries within
Access Control Lists of files stored on an NTFS volume

Medium: All files on an NTFS volume

Key: Security Identifiers in ACEs

Differentiator: ACEs with an unlikely combination of
permissions

Background: NTFS Security

NTFS Permissions
Entries correspond to system users

There are 22 unique permissions available, stored
in 14 bits of a 32-bit field

Many more granular permissions exist than
“Read, Write, Execute”

Simple and Advanced Views

NTFS Permissions

Permission entries are stored
using Security Identifier (S-ID)

If the user is removed, the OS
can’t look up the friendly name

Photo shows same file after
“Michael” is removed from OS

NTFS Security Identifiers

Maximum Size: 68-bytes

1st byte is the revision
(Always 1)

2nd byte is the count of SubAuthorities in this SID
(Maximum 15 SubAuthorities per SID)

6 bytes used for the Identifier Authority
(Always 000004)

60 bytes store the content of the SubAuthorities and the
Relative ID

Acronym Review (AR)

Access Control List (ACL)

A list of Access Control Entries

Access Control Entry (ACE)

A permission rule (allow or deny) pertaining to a SID

Security Identifier (SID)

A unique identifier for a user or group of a Windows
system

Demonstration

A folder full of files

A filelist.txt with these files

A .tc volume with cool stuff in it

Encoding the volume

Showing the ACEs on the files

Decoding the volume

ACL Steganography

A file is split up
into 60-byte
chunks

Each chunk
becomes a SID

Two files in the FileList.txt

ACL Steganography

ACEs are
created with
“Allow”
permissions for
each of these
SIDs

ACEs are added
to the ACLs of
multiple files

ACLEncoding Details

Two bits are set for all ACLEncoded entries:

Synchronize + ReadPermissions

Synchronize cannot be set within the Windows UI

The 9 least significant bits are used as a counter from 0-512

ACLEncode Details

The FileList becomes a kind of symmetric key between
the encoder and decoder

The list identifies:

Which files have ACLEncoded entries

The order in which those entries are encoded

Limitations

An ACL can be no bigger than 64kB per file

Maximum ACE size is 76 bytes (68 for SID + 8 byte header)

This produces a theoretical maximum of 862 ACEs per file

I’ve imposed a limit of 512 entries per file

This leaves room for legitimate permissions

Limitations

The largest possible file to be encoded:

NumFilesInList * 512 * 60bytes

or about 30KB per file

Need to store a larger file? Use a longer file list.

$SECURE File Limitation

The $SECURE file is a hidden file on every NTFS volume

All ACLs for all files are stored in this one file

Each time a new SID is encountered, it’s added to this file

This way, future permission operations for that user can
use the existing reference without duplicating it

$SECURE File Limitation

NTFS does *NOT* remove old/unused SIDs from the
$SECURE file

The $SECURE file is designed only to grow in size and
never shrink

This means, every ACLEncoded chunk from every run of
ACLEncode will persist here forever

A Forensic Review

I conducted a test:

2GB USB Key, formatted as NTFS

AccessData FTK 4.0.2.33

Guidance EnCase Forensic 6.19.6

Forensic Test - File List

Forensic Test - Input File

DEFCONXXI repeated
over and over

4 KB

AccessData FTK 4

Forensic Test - FTK4

Forensic Test - FTK4

Forensic Test - FTK4

FTK4 has no way to show Access Control Lists of files

Contacted their tech support

Discussed on their user forum

“Use another tool”

Guidance EnCase Forensic 6

Forensic Test - EnCase 6

Forensic Test - EnCase 6

Forensic Test - EnCase 6

Forensic Detection of ACLEncoding

Detection of ACLEncoded entries is a manual process

(using the most popular forensic tools)

Detection can be automated with the creation of
EnScripts (EnCase’s scripting language) and other
purpose-built tools

Unfortunately not enough time to go over these today

Questions and Answers

If you have questions, see me in the Speaker Q&A room

Thanks to Josh, Nick, Joel, Reesh, Kyle for their help with
testing

Thanks to my family, my friends, my colleagues, and my
employer for providing me the time for this research

Thanks to Eugene Filipowitz for seeding the thought in my
mind:
“How can you hide data on a drive without detection?”

ACLEncode
Source Code

http://www.perklin.ca/~defcon21/ACLEncode.zip

Latest Slides

http://www.perklin.ca/~defcon21/aclsteganography.pdf

DEFCON 21
Michael Perklin

References
http://msdn.microsoft.com/en-us/library/gg465313.aspx

http://stackoverflow.com/questions/1140528/what-is-the-maximum-length-of-a-sid-in-sddl-
format

http://technet.microsoft.com/en-us/library/cc962011.aspx

http://msdn.microsoft.com/en-CA/library/ms229078(v=vs.85).aspx

https://github.com/mosa/Mono-Class-Libraries/blob/master/mcs/class/corlib/
System.Security.AccessControl/FileSystemRights.cs

http://msdn.microsoft.com/en-us/library/system.security.accesscontrol.filesystemrights.aspx

http://www.ntfs.com/ntfs-permissions-access-entries.htm

http://www.ntfs.com/ntfs-permissions-security-descriptor.htm

http://support.microsoft.com/kb/279682

