
Please insert
inject more

coins

Defcon XXI

Press start

 x 2

Me ?

 Nicolas Oberli (aka Balda)
 Swiss security engineer
 CTF enthusiast
 Retro gamer
 Beer drinker / brewer

 x 3

It all started so simply...

 I wanted to add
coin handling to
my MAMEcab

 Bought a coin
acceptor on an
auction site

 x 4

Coin handling devices

 All kind of machines use coin handling
devices
– ATMs
– Vending machines
– Casino game machines
– …

 Multiple devices are used in those
machines

 x 5

Coin / Bill acceptors

 Used to count coins and
bills

 Can detect coin/bill
value

 Detects false coins/bills

 x 6

Coin hopper

 Used to give coins back
to the customer
– One hopper per coin value
– Gives back coins one by

one

 x 7

Communication protocols

 Multiple protocols are used to
communicate with these devices
– Parallel
– Serial (RS232)
– MDB
– ccTalk

 The protocols are very vendor-specific
 ccTalk is what we will be talking about

 x 8

ccTalk ?

 “coin-controls-Talk”
 Semi-proprietary protocol

– Maintained by Money Controls LLC, England
– Protocol specs available on cctalk.org

● Some parts of the specs are only available after
signing a NDA :-(

 x 9

ccTalk ?

 Request / response messages
 RS232-like data transmission

– Uses only one wire for both sending and
receiving

– 9600 bits/s, 8N1, TTL signals (0 - 5V)

 Each device has its own address on the
bus
– By default 1=controller, 2=coin acceptor

 x 10

ccTalk message format

 All frames use the same format

– Header is the actual command sent to the
device

● Header == 0 means it's a response

 Payload length can vary from 0 to 252
– Data length != packet length

 Checksum is the complement to 0xFF of
the packet

destination data length source header [data] checksum

1 byte

 x 11

ccTalk headers

 Each command is assigned a header
– Since its coded in a byte, 256 possible

commands
● From the doc :

 x 12

Sample communication

 02 00 01 FE ff
– Sample poll from @01 to @02

 01 00 02 00 FD
– Response from @02 to @01

 02 00 01 F6 07
– Request manufacturer ID

 01 03 02 00 4E 52 49 11
– Response (length 3) : NRI

● (ASCII encoded)

 x 13

Coin acceptor handling

 The controller polls a coin acceptor using
header 229
– The response contains the following payload

 Counter is incremented for each event
generated by the acceptor
– Event counter cycles from 1 to 255

Result 1A Result 1Bcounter Result 2A Result 2B
Result 3A Result 3B Result 4A Result 4B Result 5A
Result 5B

1 byte

 x 14

Coin acceptor results

 The last five results are sent in the
response
– Result A contains the validation channel

● A device can recognize a certain amount of
different coins which are organized in channels

● Either set by the manufacturer or by config

– Result B contains the error code (Bad coin,
mechanical error, ...)

● Again, the codes are vendor specific

– Sometimes, results A and B are switched

 x 15

Initial project

 Implemented the ccTalk protocol to
handle a coin acceptor

 Use a Teensy in keyboard mode
– When a coin is inserted, determine its value

and send the corresponding number of
keystrokes to MAME

 x 16

Can we do more ?

 Other vending machines may use other
headers and / or functions

 It is difficult to track responses
– You need to decode the request first

 There is no open source sniffer for
ccTalk...

 x 17

Introducing ccSniff/ccParse

 Python utilities used to sniff data on a
ccTalk bus and parse the sniffed data to
a readable format
– Use a ccTalk library developed from scratch

 Can use a bus pirate to sniff
– It's the best way, since it can handle UART

signals correctly

 x 18

Demo !

 x 19

Can we do even more ?

 What if we can inject some data on the
bus ?
– Like telling the controller “Hey ! I'm the coin

acceptor and I received a LOT of money !”

 The problem is, we only have one wire
for the whole bus
– Both us and the device receive the request

at the same time
– This means we would answer at the same

time and jam the signal

 x 20

ccTalk multidrop commands

 Used by the controller to resolve
addressing conflicts
– Header 251 – Address change
– Used by the controller to force a device to

change its address in case of conflicts

 x 21

Device in the middle

 No checks are made to ensure that the
request is valid
– Simply tell the device at address x that it

needs to change its address to y

 Using these requests, we are now able to
hijack the device
– It allows us to intercept all communication

between the controller and the device

 x 22

Injection scheme

Mainboard Device Attacker

@1 @2
Credit read

Credit response

@77

@1 @2
Address change

@2@1 @99

 x 23

Timing

 We need to be sure that we won't jam
the current traffic

 At 9600b/s, it takes 1.04ms to send a
byte

 Specs indicate that devices need to be
polled every 200ms
– Largely enough time for us

 x 24

Device hijacking

 To hijack a device on the bus :
● Scan the bus to search for silence
● If sufficient periods of silence, prepare injection
● Craft an address change packet
● Wait for silence period, then inject packet
● Respond to requests from the controller
● When finished, set the device to its original

address

 Remember, we need to do this while the
bus is in use

 x 25

Introducing ccJack

 Automates the hijacking process
 Can emulate any device by sniffing the

current responses and reply the same
 Can use a bus pirate to sniff and inject

 x 26

Example : Inject coins !

 Once the coin acceptor is hijacked, just
respond by incrementing the counter
– It is also possible to modify the coin code to

increase the value of the injected coin

 Be careful ! The counter must be higher
or equal to the last value
– Any lower value will make the controller

throw an error and likely reset itself

 x 27

More ?

 As the acceptor is “offline”, we can do
whatever we want to it
– Some coin acceptors can be recalibrated by

ccTalk
● Look for headers 201 and 202
● What if one cent becomes $1 ?

– The path the coin takes after being accepted
can be modified

● Look for headers 209 and 210
● What if the new path is the money return ?

 x 28

Demo !

 x 29

Hopper handling

 Hoppers follow a special schema to
release money (simplified)
– Controller asks for a challenge (Header 160)
– Hopper responds with 8 random bytes
– Controller encodes this challenge and sends

the response with the number of coins to
release (Header 167)

– Operation is checked periodically by the
controller (Header 166)

 x 30

Hopper bias

 To simplify these steps, some vendors
provide hoppers with no
challenge/response support
– Sometimes, you just need to send the

hopper serial number as the response
– Sometimes...

If the hopper Product Code is "SCH2-NOENCRYPT", then the
DISPENSE COINS command still needs an 8-byte code, but the
value of the code does not matter.

 x 31

Grab the money !

 After a hopper is hijacked, just tell it to
dispense 0xff coins
– Will only work if the hopper does not use the

challenge/response method

 Better : Use the “Purge hopper”
command (Header 121)
– Does not take any challenge/response
– Hardly ever implemented in practice

 x 32

Isn't there any protection ?

 Some devices only respond after having
been provided a PIN code
– Only for a subset of commands

● Depends on the device / firmware / vendor

– Well, just wait for the PIN to be sent by the
controller

● Check for header 218

– We can “help” it by pulling the power cord
– It could be possible that the PIN code is the

same for a vending machine model

 x 33

Encryption

 In later versions of the specs, the ccTalk
payload and headers can be encrypted
– Two encryption methods available

● Proprietary encryption – 24 bit key
● DES encryption – 56 bit key

– Use a pre-shared key between the controller
and the devices

 Encryption uses different headers
– Header 229 vs header 112
– Still possible to get values from the

“unencrypted” header

 x 34

Future – Research fields

 More things to discover on the protocol
– Encryption support seems suspicious

● Keys can be transferred using ccTalk
● Proprietary and closed-source encryption could

be weak

– Some devices accept dumping their internal
memory by ccTalk

● Maybe there are vulns in the firmwares ?

– It is possible to upload a new firmware to
the devices using ccTalk

● Evilgrade ccTalk edition ?

 x 35

Conclusions

 Specific protocols can be fun to analyze
– You never know where you can find exotic

protocols

 ccTalk definitely needs more attention
– Since it transports money-related

information, there are interesting
applications

 If you don't have one, get a bus pirate
– It's pure awesomeness !

 x 36

Availability

 ccTools available on my GitHub account
– https://github.com/Baldanos/ccTools

 More information about ccTalk after
Defcon on my website
– http://www.balda.ch

https://github.com/Baldanos/ccTools

 x 37

Many thanks !

Any questions ?

@Baldanos
http://www.balda.ch

Did I mention I LOVE beer ?

