Please insert
inject more
COLNsS

Detfcon XXIL

Press start

Me ?

= Nicolas Oberli (aka Balda)
= SWISS security engineer

= CTF enthusiast

= Retro gamer

= Beer drinker / brewer

It all started so simply...

= | wanted to add
coin handling to
my MAMEcab

= Bought a coin
acceptor on an
auction site

. \}
~ VIDEO JEUX |

Coin handling devices

= All kind of machines use coin handling
devices

- ATMs
- Vending machines
- Casino game machines

= Multiple devices are used in those
machines

Coin / Bill acceptors

» Used to count coins and
bills

= Can detect coin/bill
value

» Detects false coins/bills

Coin hopper

= Used to give coins back
to the customer

- One hopper per coin value

- Gives back coins one by
one

Communication protocols

= Multiple protocols are used to
communicate with these devices

- Parallel

- Serial (R5232)
- MDB

- ccTalk

= The protocols are very vendor-specific
= ccTalk iIs what we will be talking about

ccTalk ?

= “coin-controls-Talk”

= Semi-proprietary protocol

- Maintained by Money Controls LLC, England

- Protocol specs available on cctalk.org

 Some parts of the specs are only available after
signing a NDA :-(

ccTalk ?

= Request / response messages

» RS232-like data transmission

- Uses only one wire for both sending and
receiving

- 9600 bits/s, 8N1, TTL signals (0 - 5V)

= Each device has its own address on the
bus

- By default 1=controller, 2=coin acceptor

ccTalk message format

= All frames use the same format

1 byte

- Header is the actual commmand sent to the
device

« Header == 0 means it's a response
= Payload length can vary from 0 to 252
- Data length '= packet length

= Checksum is the complement to OxFF of
the packet

ccTalk headers

Each command is assigned a header

Since its coded in a byte, 256 possible
commands

From the doc :

Header 246 -
Header 245 -
Header 244 -
Header 243 -
Header 242 -

Header 24 1

Header 240 -
Header 239 -
Header 238 -

Header 237 -
Header 236 -
Header 235 -

Request manufacturer 1d.........ooviiiii et e et e e se e
Request equipment cateZOry 1ooi i et e e e
Request database VETSTOM ...t ettt et e e st e et e
Request serial mUMber. ... e e aee e
- Request SOTtWATE TEVISTOMottt et ettt ste st e ae e
OIPETALE ITIOLOTS 1ttt it etie ettt asetie et sas et s esie et a0 et s a0 aass a8 et 50 b ot e 21 et et as s 2 an e e 2t an
TESTOULPUL TIIIES .ttt ettt ettt er e et es et erte e st st ettt 2t ebm s an es 0 es s aen

w11
w12

Read input lines ..
Read opto states ..

Read last credit or error wde

9
9
9
9
10
10
10
11

1

12

Sample communication

= 02 00 O1 FE ff

- Sample poll from @01 to @02
= 01 000200 FD

- Response from @02 to @01
= 020001 Fo6 07

- Request manufacturer ID

» 01 0302004E 5249 11

- Response (length 3) : NRI
« (ASCIl encoded)

Coin acceptor handling

= The controller polls a coin acceptor using
header 229

- The response contains the following payload

1 byte

_
counter Result 1A Result 1B | Result2A | Result 2B

| Result3A | Result3B Result 4A Result48 | Result5A
Result 5B

= Counter is incremented for each event
generated by the acceptor

- Event counter cycles from 1 to 255

Coin acceptor results

» The last five results are sent in the
response

- Result A contains the validation channel

« A device can recognize a certain amount of
different coins which are organized in channels

« Either set by the manufacturer or by config

- Result B contains the error code (Bad coin,
mechanical error, ...)

« Again, the codes are vendor specific
- Sometimes, results A and B are switched

Initial project

» Implemented the ccTalk protocol to
nandle a coin acceptor

= Use a Teensy in keyboard mode

- When a coin is inserted, determine its value
and send the corresponding number of
keystrokes to MAME

Can we do more ?

= Other vending machines may use other
headers and / or functions

= |t is difficult to track responses

- You need to decode the request first

= There Is no open source sniffer for
ccTalk...

Introducing ccSniff/ccParse

= Python utilities used to sniff data on a
ccTalk bus and parse the sniffed data to
a readable format

- Use a ccTalk library developed from scratch
= Can use a bus pirate to sniff

- It's the best way, since it can handle UART
signals correctly

length=4 header=H data=H1H4H4H4:
2 length=H header==Z3H>
length=¢ header
2 length=H header=1
length=1 header
d=t=2 length=H header==:

= In response to

o
Lcctalk sroc=1 dst=2

= Payload decoding

Event Counter : ©

Fesult H - Eesult
Fesult - Fesult
Fesult Fesult
Hesult Fesult
Fesult Fesult

o
-, |
N

| §

.,_
||
B
N

]
|
—
=

on
- |
—
S

W
o=
o

Faw dump of packet
H

Can we do even more ?

= What if we can inject some data on the
bus ?

- Like telling the controller “Hey ! I'm the coin
acceptor and | received a LOT of money !”

= The problem is, we only have one wire
for the whole bus

- Both us and the device receive the request
at the same time

- This means we would answer at the same
time and jam the signal

ccTalk multidrop commands

= Used by the controller to resolve
addressing conflicts

- H
- L

eader 251 - Address change
sed by the controller to force a device to

C

nange its address in case of conflicts

Device in the middle

= No checks are made to ensure that the
request is valid

- Simply tell the device at address x that it
needs to change its address to y

= Using these requests, we are now able to
hijack the device

- It allows us to intercept all communication
between the controller and the device

Injection scheme

el odt espon a2
- .
Credit response

Address' change

I -

BN - - 2

arors e o

Timing

= We need to be sure that we won't jam
the current traffic

= At 9600Db/s, It takes 1.04ms to send a
byte

= Specs indicate that devices need to be
polled every 200ms

- Largely enough time for us

Device hijacking

= To hijack a device on the bus :

Scan the bus to search for silence

If sufficient periods of silence, prepare injection
Craft an address change packet

Wait for silence period, then inject packet
Respond to requests from the controller

When finished, set the device to its original
address

= Remember, we need to do this while the
bus IS In use

Introducing ccJack

= Automates the hijacking process

= Can emulate any device by sniffing the
current responses and reply the same

= Can use a bus pirate to sniff and inject

Example : Inject coins !

= Once the coin acceptor is hijacked, just
respond by incrementing the counter

- It is also possible to modify the coin code to
Increase the value of the injected coin

= Be careful ! The counter must be higher
or equal to the last value

- Any lower value will make the controller
throw an error and likely reset itself

More ?

= As the acceptor is “offline”, we can do
whatever we want to it

- Some coin acceptors can be recalibrated by
ccTalk

e Look for headers 201 and 202
« What if one cent becomes $1 ?

- The path the coin takes after being accepted
can be modified

» Look for headers 209 and 210
 What if the new path is the money return ?

Demo !

Hopper handling

= Hoppers follow a special schema to
release money (simplified)

- Controller asks for a challenge (Header 160)
- Hopper responds with 8 random bytes

- Controller encodes this challenge and sends
the response with the number of coins to
release (Header 167)

- Operation is checked periodically by the
controller (Header 166)

Hopper bias

= To simplify these steps, some vendors
provide hoppers with no
challenge/response support

- Sometimes, you just need to send the
hopper serial number as the response

- Sometimes...

§If the hopper Product Code is "SCH2-NOENCRYPT", then the 3
DISPENSE COINS command still needs an 8-byte code, but the
‘value of the code does not matter.

Grab the money !

= After a hopper is hijacked, just tell it to
dispense Oxff coins

- Will only work if the hopper does not use the
challenge/response method

= Better : Use the “Purge hopper”
command (Header 121)

- Does not take any challenge/response
- Hardly ever implemented in practice

Isn't there any protection ?

= Some devices only respond after having
been provided a PIN code

- Only for a subset of commands

 Depends on the device / firmware / vendor

- Well, just wait for the PIN to be sent by the
controller

 Check for header 218
- We can “help” it by pulling the power cord

- It could be possible that the PIN code is the
same for a vending machine model

Encryption

= |[n later versions of the specs, the ccTalk
payload and headers can be encrypted

- Two encryption methods available

* Proprietary encryption - 24 bit key
 DES encryption - 56 bit key

- Use a pre-shared key between the controller
and the devices

= Encryption uses different headers

- Header 229 vs header 112

- Still possible to get values from the
“unencrypted” header

Future - Research fields

= More things to discover on the protocol

- Encryption support seems suspicious

« Keys can be transferred using ccTalk

* Proprietary and closed-source encryption could
be weak

- Some devices accept dumping their internal
memory by ccTalk

« Maybe there are vulns in the firmwares ?

- It is possible to upload a new firmware to
the devices using ccTalk

« Evilgrade ccTalk edition ?

Conclusions

= Specific protocols can be fun to analyze

- You never know where you can find exotic
protocols

= ccTalk definitely needs more attention

- Since it transports money-related
iInformation, there are interesting
applications

= |f you don't have one, get a bus pirate
- It's pure awesomeness !

Availability

= ccTools available on my GitHub account
- https://github.com/Baldanos/ccTools

= More information about ccTalk after
Defcon on my website

- http://www.balda.ch

https://github.com/Baldanos/ccTools

Many thanks !

Any questions ?

@Baldanos
http://www.balda.ch

Did | mention | LOVE beer ?

