

Attacking the Traveling Salesman Point-of-sale attacks on airline travelers DEFCON 2014

Alex Zacharis Nikos Tsagkarakis

info@census-labs.com Census S.A. http://census-labs.com/

Contents

- Why target travelers?
- Point-of-Sale attacks in transportation
- Case Study
- Back to the Lab
- POS: exploiting different modules
 - Cameras everywhere
 - Scan that QR
 - RAM scrapping
- TS POS Malware
- Aztec Revenge Tool

Why target travelers?

- The need for communication is greater than privacy and/or security
- The unknown Internet access landscape forces you to trust what you normally wouldn't
- WiFi:
 - Login to (corporate) email accounts
 - Login to social networks
- Carry mobile phones, tablets, laptops ,usually all on at the same time ;)
- No second thoughts about public Internet hotspots

Point-of-Sale attacks in Transportation

Unlike traditional POS attacks in Commerce (ex. Target Incident):

- Credit card details
- Web credentials

We target International Travelers' information:

- Name
- Picture
- Flight number
- Destination
- Seat number
- Communication partners
- Other....

How is the POS introduced

As in every known POS Attack (Retail, Healthcare, etc):

- 1. The system may have unpatched vulnerabilities
- 2. An employee of the victim company may introduce it by mistake (opening an email attachment containing malware)
- 3. The source might even be an employee looking to cause trouble.

POS attack outcome

Who benefits?

.Cyber Criminals (Identity theft)

.Private Investigators (spying)

Government Agencies (spying)

After a successful attack we can achieve:

.Travelers "profiling" without authorized access to Airport Data

With enough data collected we can categorize travelers per:

- Destination (ex. Who travelled from Greece to Germany in the last month)
- Company (ex. All Aegean passengers)
- **Class** (ex. Who is travelling 1rst class OR Business)
- Flight/Date (ex. All passengers of a specific flight)
- Combination of the above

POS Systems Present

What are the possible POS Systems of interest?

- Check-in kiosks
- Purchase WiFi time kiosks
- Internet Access Points (Terminals)
- Luggage Locator kiosks

Case Study: An International Airport in Greece

TRAFFIC HIGHLIGHTS		
TRAFFIC HIGHLIGHTS	2011	2012
Total Number of Passengers (million)	14.4	12.9
Domestic	4.9	4.5
International	9.5	8.4
Business Passengers	30%	30%
Connecting Passengers	22%	23%

January-March 2014, Passenger traffic reached 2.4 million

Lets talk numbers (rough estimation):

Estimated travelers per year: 12 million Business Passengers (30%): 3,6 million Business Passengers Using POS (1%): 36000

Purchase WiFi time kiosks

- Buy extra WiFi time (accepts coins and bills, gives change)
- Check flight details (Barcode/QR scanner)
- Make Internet phone calls (VOIP) (Webcam available)
- Placement: 6 in number located in high accessible location throughout the airport

Kiosk Services: Buy Wifi

Kiosk Services: VOIP calls

Purchase WiFi time kiosks: Attack

- Escape interface and expose machine details:
 - OS: Windows 7
 - No antivirus
 - Internet Connection
 - Administrative modules (proxy)
- USB enabled
 - Useful for installing homemade POS malware directly

The ALT+TAB attack ;)

- Escaping the restrictive POS Interface
- Keyboard input sanitization failure
 - Left Alt + tab -> locked
 - Right Alt + tab -> works!!!

USB Port accessible

USB port exposed/active

Exposing administrative modules

- Bad sanitization of user input from keyboard
- Basic Windows commands can be issued from keyboard
 in order to switch view to administrative interface
- Administrative interface enabled with full privileges
 directly issuing hardware commands
 - Like for example the **PAY command ;)**
 - Other Commands:
 - Status
 - Start/Stop
 - Set Override

Admin interface #1

Admin interface #2

I VO\Applications\AlAVendingManage	er\AlAVendingN	lanager.exje	
κίνηση εφαρμογής ψη στοιχείων από την βάση για Βάτιο κερμάτου	το σύνολο	τωυ χρημάτωυ	του μηχανήματος
βώτιο κερμάτων σότητα κερμάτων (5c)			
σότητα κερμάτων (10c)	: Ø : 28		
σότητα κερμάτων (20c)	: 162		
σότητα κερμάτων (50c)	: 18		
υσότητα κερμάτων (1Ε)	: 18 : 0 : 2		
οσότητα κερμάτων (2Ε)	: 2		
ιβώτιο χαρτονομισμάτων			
οσότητα χαρτονομισμάτων (5Ε)	: 0 : 17 : <u>1</u> 4		
οσότητα χαρτονομισμάτων (10Ε)	12		
οσότητα χαρτονομισμάτων (20Ε) οσότητα χαρτονομισμάτων (50Ε)	= 14		
οσότητα χαρτονομισμάτων (100Ε)	: 0		
(ιβάτιο ρέστων			
Ιοσότητα χαρτονομισμάτων (5Ε)	: 31		
Hoppers			
Ποσότητα κερμάτων (10c)	: 348		
Ποσότητα κερμάτων (20c) Ποσότητα κερμάτων (50c)	= 98 = 251		
Ποσότητα κερμάτων (1Ε)	: 215		
Ποσότητα κεομάτων (2Ε)	: 153	harmal and	
Προσπάθεια εκκίνησης TCP εξυπηρα Εκκίνηση Αειτουργίας περιφερεια	ετητή για το	CcTalk	

TOTAL: 736 Euros in coins

Admin interface #3

	21	Fayout		
		Heppevil Address: 5	Vide	- ME
		HupperZ		- Promitie
	5	Address 3	Without	
		HopperJ		PayMean
		Address 7	Villas	_
		Hopper# Address 5	Volui	Evenue
		Happer5	1000	linest.
	-	riddress 4	Value	Diagonthy
			Huy.	Ends Partient
alanci		Sime		
Gault II I I I I I I I I I I I I I I I I I		Open	Clase	Fay
20 50 ' 100 _ 200		Ret	Stop	
Sel Dwittin .		Enable	Osattav	-
			Lan	38.0
		Chaol		

Paying Ourselves Through Admin Module

Informing the Airport

March, 2014

- Presentation of the attacks to Administration, IT and Security team of the Airport.
- Real life example: Cashing out Money!

USB port Secured

A month later

The ALT+TAB bug was fixed and the USB port was protected.

BUT the System was still vulnerable after the patch...

New attack Vectors

Looking for new attack vectors to make the system crash and expose the underlying admin interface...

But how?

-Full Interface Testing -Barcode Fuzzing (We need a Tool)

Interface Testing

- Exposing The Administrative interface by causing the app to try to connect to the Internet.
- A Pop Up connection blocker causes the interface to expose the minimized Admin Interface Window.

Click causing popup action

Admin Interface Exposed

Exposed Minimized Window

Back to the Lab

The Need:

Develop a malware to install in the kiosk that:

- Exploits the WebCam Module
- Has RAM scrapping functionality
 - Get scanned e-ticket details
- Receives Bar Code Commands

Develop a tool that:

- Fuzzes the barcode scanner to expose errors.
- Provide commands to our malware.

Outcome:

- Inspiration for the Travelers Spy (TS) POS malware
- Creation of the Aztec Revenge Tool (Android Mobile App)

Camera Module Exploitation

WHY?

1. "Eyes" inside the Airport.

(Multiple Spots, Requires Connect Back)

2. Capture Users Facial Image without consent during ticket scan event. ("full profiling")

Barcode Scanner + Privacy Issues

- Barcode scans e-tickets and retrieves
 travelers details
- Doesn't log scans
- Scanned barcode info decoded and present in RAM
- Network calls containing travelers
 information
- Ticket formats tested:

BCBP (bar-coded boarding pass) Aztec (popular with E-tickets)

BCBP Code Technical Info

- General Info
 - Bar Coded Boarding Pass
 - IATA, 2005
 - Used by more than 200 airlines (36 use mobile)
 - In Paper: PDF417
 - Digital: Aztec code,
 Datamatrix and QR code

PDF417 Technical Info

- Portable Data File, 1991
- ISO standard 15438
- 417 each pattern consists of 4

bars and spaces, each pattern is 17 units long.

- Linear barcode
- Use in:
 - Transportation
 - Identification cards
 - Inventory management

BCBP (PDF417) Code Decoded Info

29

RAW DATA: M1ZACHARIS/ALEXANDROS E5YBG6J ATHIOAA3 0166 136Y020D0025 147>218 W B

M1: Format code 'M' and 1 leg on the boarding pass.

ZACHARIS/ALEXANDROS: Passenger Name.

E5YBG6J : My booking reference.

ATHIOAA3 : Flying from ATH (Athens) to IOA (Ioannina) on A3 (Airplane Company: Aegean)

0166 : Flight number 166.

136: The Julian date.

Y: Cabin – Economy in this case. Others including F (First) and J (Business).

020D: Passengers seat.

0025: Sequence number. In this case passenger was the 25th person to check-in.

147: Field size of airline specific data message.

>:Beginning of the version number

2: The version number.

18: Field size of another variable field.

W: check-in source.

B: Airline designator of boarding pass issuer.

29: Airline specific data

Aztec Code Technical Info

- 2D barcode, 1995
- ISO/IEC 24778:2008
- 1914 bytes of data encoded
- Use in transportation, especially Etickets
- Present in Mobile Phones, handheld devices.

BCBP Aztec Code Decoded Info

M1ZACHARIS/ALEXANDROS4AEHBT ATHIOAA3 0160 117Y017A0052 100

M1: Format code 'M' and 1 leg on the boarding pass.

ZACHARIS/ALEXANDROS: Passenger Name.

4AEHBT: My booking reference.

ATHIOAA3: Flying from ATH (Athens) to IOA (Ioannina) on A3 (Airplane Company: Aegean) **0160:** Flight number 160.

117: The Julian date. In this case 117 is April 27.

Y: Cabin – Economy in this case. Others including F (First) and J (Business).

017A: Passengers seat.

0052: Sequence number. In this case passenger was the 52th person to check-in.

100: Field size of airline specific data message.

Attack: Duplicate E-Ticket

- We need a tool to ex-filtrate e-tickets. (TS POS Malware)
- We need a tool for fast e-ticket duplication after we retrieve the data for the hacked machine (AztecRevengeTool)
- Use the cloned e-ticket to **impersonate** someone else and gain access to the Tax Free area of the Airport.

TS POS Malware

Travelers Spy (TS) POS malware

Based on our Use Case TS-POS malware should feature the following capabilities:

- Running on background
- Perform Ram Scrapping to identify E-tickets Already Scanned.
- On E-ticket scan event, Captures Image through Webcam
- Hook on Barcode Scanner Process (if possible)
- Receive Commands through Aztec Code images when proper format bits are encoded in the image.
- Connect Back if Internet connectivity available.

Image Capturing in action

- Hooking Barcode Scanner in order to trigger the image Capture in Time.
- Naming the image with a Time Stamp.
- Feature is disabled by default due to major drawbacks.
 Problems:
 - Timing the image capture
 - Correlating Images with Travelers Data
 - Large number of files, **Detectable**

RAM Scrapping in action

RAM Scrapping Functionality:

- 1. Extract RAM of Barcode Scanner Proc
 - Map Interesting processes, Target the browser Process too!
 - Do it periodically (every two hours)
 - Windows API, ReadProcessMemory function
- 2. Search
 - String Identifiers (Unique Start, Stop Values, Fixed Size), Regular Expressions
 - Candidate Data (Store if not sure)
- 3. Exfiltrate Information
 - Is Internet Connection Available? (In our case yes)
 - If not? (Store Locally)

RAM Scrapping example

1. Dumping process memory with volatility:

volatility-2.3.1.standalone.exe -f "Clean Xp-b71adf32.vmem" -p 980 memdump -D memory/

2. Using Wingrep to locate scanned e-ticket (multiple hits):

3. Storing Unique Values (Discarding Duplicates)

Aztec Code Command Set

- Why Use?
 - Important mainly for exfiltration reasons in case of no internet connection.
 - Ask malware to present specific data
 - Stop/Start extra functionality (image capturing)
 - Issue network scan commands to further infiltrate/pentest the network

Aztec Revenge Tool

Aztec commands from your phone (Aztec Revenge Tool)

PoC Android Mobile

Supports: PDF417, Aztec Code

3 Modes of Operation:

- E-ticket Duplicator Mode
- PENTEST Mode (Fuzzer)
 - Converts SQLi and web service payloads to Aztec Code images trying to fuzz Barcode scanners
- MALWARE COMMAND Mode
 - If our malware is already installed sends commands via Aztec Code images

E-ticket Duplicator Mode

- Why Duplicate a retrieved E-ticket:
 - Impersonation
 - Use it as basis to fuzz parameters expected by the system.
- How it works:
 Scans An image of the ticket in real time and decodes the content

Duplicating in Action

Pentest Mode (Fuzzing)

- Fuzzing E-Ticket or other Barcode Scanners
- Fuzz Formats Supported:
 - String
 - Integer
 - Random String
 - Predefined (Sqli, Xss)
- Example Use (Airport):
 E-CheckIn Device

ENCODER	FUZZER	COMMANDER	
M1ZACHARIS/ALEXAN\$1D 173Y012C0037 35C>2180 *306000000K09		99 IOAATHA3 0167 2939024172743430 A3	+
: Predefined string from interest	ing-metacharac	ters.txt	*
_	Start		
AztecRevengeTool			Ť
EMCODER	FUZZEN	COMMANDER	
MIZACHARIS/ALEXANDR	05 E7M4H99	DIDAATHAS 0167	-
Add Fuzzer Variable			
\$1	Pi	edefined	
interesting-metacharacters.	txt		
			- 1
	Add		
_	Add	_	

Fuzzing in Action

🖋 🗎 5:02

E

Command Mode

- Useful when no internet connectivity available
 - Dump RAM
 Captures
- Issuing Commands (Ex. Spy on a specific traveler or group)
- Perform Network Scan
- Image Capturing
- Cash Out Money

Combined Attack

Conclusion

Recommendations:

- 1. Use strong passwords to access POS devices
- 2. Keep POS software up to date
- 3. Use firewalls to isolate the POS production network from other networks or the Internet
- 4. Employ antivirus tools
- 5. Limit access to the Internet from the production network
- 6. Disable all remote access to POS systems
- 7. Check software and hardware of POS as a whole, to discover more bugs that can be used in the exploitation process

Questions?

IT SECURITY RESEARCH, DEVELOPMENT AND SERVICES

info@census-labs.com Census S.A. http://census-labs.com

