Why Don’t You Just Tell Me Where
The ROP Isn’t Supposed To Go

David Dorsey
@trogdorsey

Who's this... guy

* 10 years on the defensive side

* File analysis & RE

* Recently doing research using machine
earning

Level Setting

* ROP

* Technigue to bypass non-executable memory

* Bounce around in memory executing small
gadgets that typically end with a return
Instruction

* PIN

* Pin is a dynamic binary instrumentation
framework from Intel

* Does not require recompiling of source
code and can support instrumenting
programs that dynamically generate code

Basic Idea

* Control flow integrity
e Start with coarse grain controls

* We know valid targets for calls and rets
* Functions
e Instructions after a call instruction

* A whitelist containing these addresses

e Store the offset to these locations

* If an indirect call or a ret goes to a
different location, then ROP

How Do We Get Those?

* BranchTargetDetector pintool

* When DLL is loaded, the exported functions
are analyzed

* All calls and returns are instrumented
as well

» Offsets are stored and dumped to text
file when program exits

BranchTargetDetector

* Pros
* We get real, actual used values

* Cons
* Not the fastest thing
* Only get values from functions pin can
detect and what it actually executes
|f DLL isn’t loaded, you don’t get data
for it
* Must run multiple times

How Else Can We Get Those?

* pyew

* Much better at detecting functions
* Can extract the flow graphs

* Can bulk run all DLLs

!

Have Data, Now What?

* Store offsets in file per md5 hash of dll
* Allows for handling of different versions of the

same dll

ROPDetector

e When a DLL is loaded, load the white list for
that DLL
* Instrument all indirect calls and RETs and alert

when target is not on the white list
o O
L8
4

N

Example 1

* Adobe Reader 9.3 on Windows XP
e 32dbd816b0b08878bd332eee299bbecsd

* CVE-2010-2883
* Stack-based buffer overflow in CoolType.dll

i B

\

2

Detection!

C:\Program Files\Adobe\Reader

9.0\Reader\icucnv3io.dll
) I

0x4a80cb3f: ret
H'

Target: Ox4a82a/14 (0xZ2a’/l4

Yay?

 We detected one of the ROP chains
*Only 1

o
QW

v808B 1BD
V8088 1BF
V808B1CH

Let’s Take A Look

PUSH 3
PUSH EAX
CALL DHORD PTR DS:[EAX]

B

‘l
H

Let’s Take A Look

AABACE33| CALL icucnv36.4A846(C49

s8] ADD EBP, 794
-l‘-i
g§’ ‘!E

4A80CB3E | LEAVE

4A80CB3F | RETN

Let’s Take A Look

st y4.ya] POP ESP
dA82A715| RETN

. .

4A82A 710
AA82A 712
dA82A715

Let’s Take A Look

PUSH ©
CALL DWORD PTR DS:[EAX+5C]

RETN
1I‘-\

‘l
H

Why Only One?

* Dies on stack pivot

* Pin affects memory layout
* Run everything in pin?

How Would We Have Done?

* 45 chains in ROP sequence
* Only 14 unique addresses
e 2 indirect calls, 43 returns

* 3 of the 14 addresses on whitelist
* Each address only called once

e 42 of 45 chains would be detected

Example 2

* Adobe Reader 9.5 on Windows XP
e 6776bdal9a3a8ed4c2870c34279dbaa9

* CVE-2013-3346
 ToolButton Use After Free

Example 2 Results

* Nothing, just Adobe crashing
* Pin affected up memory layout again

/

The Neighborhood Of Make Believe

* 208 chains in ROP sequence
* Dominated by 191 chain sled

* Only 15 unique addresses
* All returns

* 3 of the 15 addresses on whitelist e

* 204 of 208 chains would be detected (g §
R}

2

A Little Math

* Probability of detecting at least one address
(assuming 11/14 detections is average)

Unique Addresses Probability of Detection

1 78.6%
2 95.4%
3 99.0%
4 99.8%
5 99.96%

10 99.999980%

A Little More Math

* Probability of detecting at least one address
(assuming 50% detection rate)

Unique Addresses Probability of Detection

1 50.0%
2 75.0%
3 87.5%
4 93.8%
5 96.9%

10 99.9%

Limitations

* Pin
* Breaks on stack pivot
Slow
* Doesn’t handle Jump Oriented
Programming (JOP)
* Only course grained control flow

Integrity

To Do List

* Figure out heap problem

* Smarter instrumentation

* Push analysis into a different thread
* Check for JOP

* Implement on OS X and Linux

* Implement fine grained controls
* “The Beast Is In Your Memory” - BH 2014

The Beast

* Defeated coarse grained CFl
e EMET

* This current implementation
» Defeated return frequency/sequence length
heuristics el
* Kbouncer g
* ROPecker

|
|

-

Fine Grained CFlI

AABACE33| CALL icucnv36.4A846(C49

anelz i) ADD EBP, 794
4A80CB3E | LEAVE

4A80CB3F | RETN

e Currently will not detect that

* Only that function should return ther

* Should be able to determine these
pairs during initial analysis time

A’ ‘l
h

#

i

1

)

Smarter Ways

* Debugger?
* Detours?
e Monitor Last Branch MSRs?

L

Ll
§

Thanks!

* Contact me
* @trogdorsey

* The Code
*https://github.com/trogdorsey/rop s

* Further Reading
* https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrum
* https://code.google.com/p/pyew/
* http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf |
* https://users.ece.cmu.edu/~zongweiz/media/ropecker.pdf '
* https://www.blackhat.com/us-14/briefings.html#the-beast-is-in-your-memory-reti rn-
oriented-programming-attacks-against-modern-control-flow-integrity-protection-5

techniques

ion-tool

|

