Why Don’t You Just Tell Me Where
The ROP Isn’t Supposed To Go

David Dorsey
@trogdorsey

Who's this... guy

* 10 years on the defensive side

* File analysis & RE

* Recently doing research using Machine
Learning

Level Setting

* ROP

* Technigue to bypass non-executable memory

* Bounce around in memory executing small
gadgets that typically end with a return
Instruction

* PIN
* Pin is a dynamic binary instrumentation
framework for the x86 and x86-64
* Does not require recompiling of source
code and can support instrumenting
programs that dynamically generate code

Basic Idea

* A whitelist for offsets that can be a
target of indirect branch or ret

* We know valid targets for calls and rets

e Functions
e Instructions after call instruction

* If an indirect call or a ret goes to a
different location, then ROP

e Store the offset to these locations

How Do We Get Those?

* BranchTargetDetector pintool
* When DLL is loaded, exported functions are
analyzed
* All calls and returns are instrumented
as well
* Great because we get actual values
* Not so great because you only get
values from functions pin can detect
and what it actually executes

BranchTargetDetector

* Pros
* We get real, actual used values

* Cons
* Not the fastest thing
* Only get values from functions pin can
detect and what it actually executes
|f DLL isn’t loaded, you don’t get data
for it

How Else Can We Get Those?

* pyew
* Much better at detecting functions
* Can bulk run all DLLs

Have Data, Now What?

e Store offsets in file by md5 hash of dll
* Allows for handling of different versions of the
same dl|

ROPDetector

* When a DLL is loaded, load the white list for
that DLL

* Instrument all indirect calls and RETs and alert
when target is not on the white list

Example 1

* Adobe Reader 9.3 on Windows XP
e 32dbd816b0b08878bd332eee299bbecsd

* CVE-2010-2883
* Stack-based buffer overflow in CoolType.dll

Detection!

C:\Program Files\Adobe\Reader
9.0\Reader\icucnv36.dll
0x4a80cb3f: ret

Target: 0x4a82a714 (0x2a714)

Yay?

 We detected one of the ROP chains
*Only 1

Let’s Take A Look

v808B1BD | PUSH 3
w8v8B1BF | PUSH EAX
wsvsB1Cu)| CALL DWORD PTR DS:[EAX]

Let’s Take A Look

AA80CE32 CALL icucnv36.4A846(C49
ADD EBP, 794

4A80CB3E | LEAVE

4A80CB3F | RETN

Let’s Take A Look

st y4.ya] POP ESP
AA82A715| RETN

Let’s Take A Look

AA82A710| PUSH ©
AA82A 712 | CALL DHWORD PTR DS:[EAX+5C]
AdA82A715||RETN

Why Only One?

eDies on stack pivot

ePin affects memory layout
e(run everything in pin?)

How Would We Have Done?

* 45 chains in ROP sequence
* Only 14 unique addresses
e 2 indirect calls, 43 returns

* 3 of the 14 addresses on whitelist
* Each address only called once

e 42 of 45 chains would be detected

Example 2

* Adobe Reader 9.5 on Windows XP
e 6776bdal9a3a8ed4c2870c34279dbaa9

* CVE-2013-3346
 ToolButton Use After Free

Example 2 Results

* Nothing, just Adobe crashing
* Pin messed up memory layout again

The Neighborhood Of Make Believe

* 208 chains in ROP sequence
* Dominated by 191 chain sled

* Only 15 unique addresses
e All returns
e 3 of the 15 addresses on whitelist

e 204 of 208 chains would be detected

A Little Math

* Probability of detecting at least one address
(assuming 11/14 detections is average)

Unique Addresses Probability of Detection

1 78.6%
2 95.4%
3 99.0%
4 99.8%
5 99.96%

10 99.999980%

A Little More Math

* Probability of detecting at least one address
(assuming 50% detection rate)

Unique Addresses Probability of Detection

1 50.0%
2 75.0%
3 87.5%
4 93.8%
5 96.9%

10 99.9%

Limitations

* Pin
* Breaks on stack pivot
*Slow

* Doesn’t handle Jump Oriented
Programming (JOP)

Possible Improvements

* Smarter instrumentation

* Push analysis into a different thread
* Figure out heap problem

* Check for JOP

Smarter Ways

* Debugger?
e Detours?

* Monitor Last Branch MSRs?
* kbouncer

Thanks!

https://github.com/trogdorsey/rop
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool

https://code.google.com/p/pyew/
http://www.cs.columbia.edu/~vpappas/papers/kbouncer.pdf

