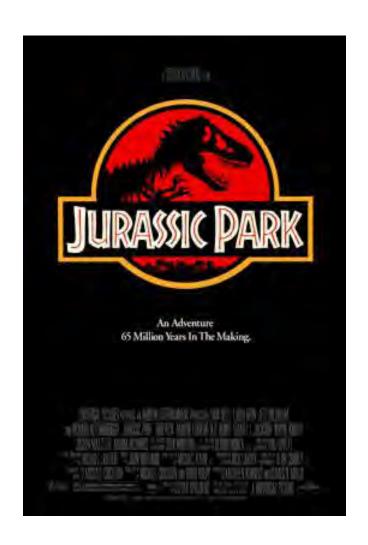
LEARN HOW TO CONTROL EVERY ROOM AT A LUXURY HOTEL REMOTELY: THE DANGERS OF INSECURE HOME AUTOMATION DEPLOYMENT

Jesus Molina
@verifythentrust
security@nomeames.com

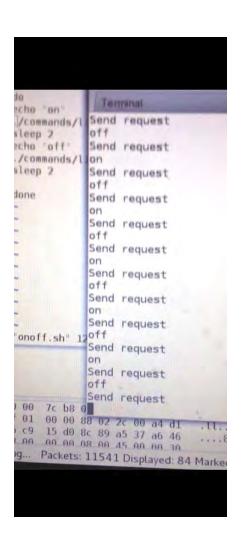
HACKING IN MOVIES

The Italian Job

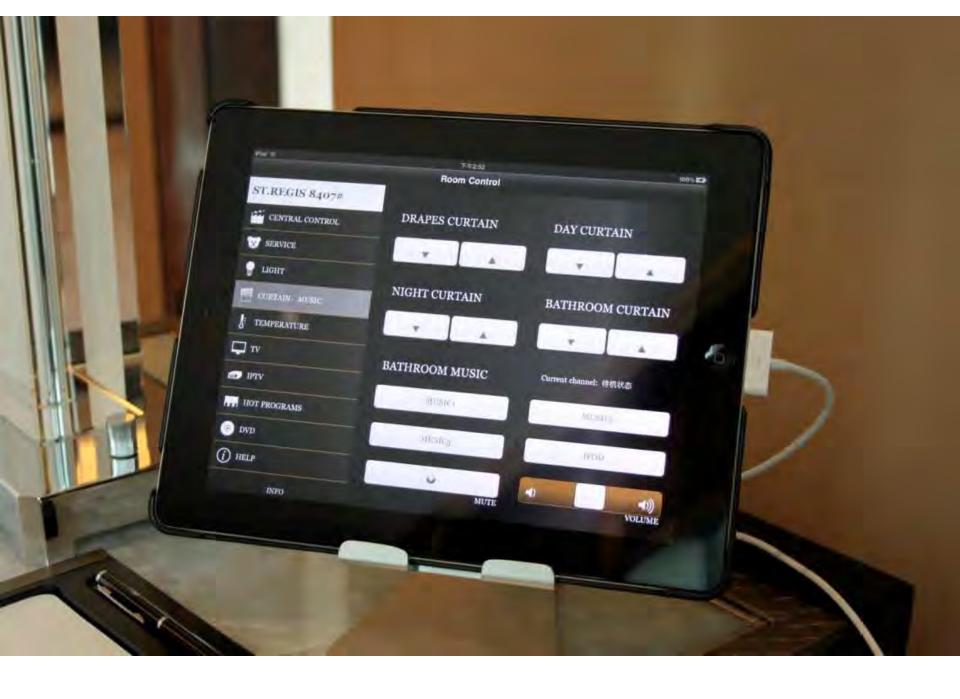
- Seth Green takes control of all kind of public transit so the mini-coopers can run free
- "all I did was come up with my own... kick ass algorithm to sneak in, and now we own the place"



Jurassic Park


- Electric fences go off, dinosaurs escape wrecking havoc. But the hacker teen fixes it later
- "It's a UNIX system"

Hack Hard


- Cheap remake of Die Hard, but the hero is a hacker defeating the terrorists by taking over control of every appliance in a Chinese luxury hotel
- "It's a KNX system! Let me google this"

THE ST. REGIS SHENZHEN

Hollywood movies vs. Art House movies

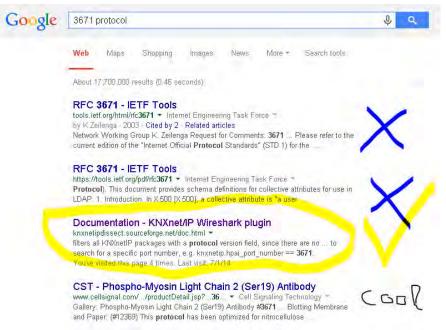
- In Hollywood movies the hacker does all the job in a mere 5 sequences
- In art house movies it takes a little longer.

Step1: Reckon

The iPad uses the guest network

Step1: Reckon

 The hero needs to understand the protocol. Using ultra high tech technology intercepts communication between iPad and devices

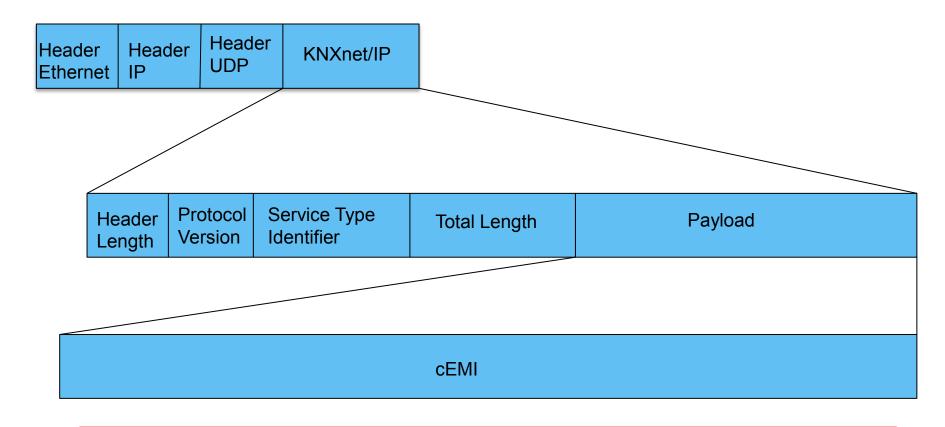

Step 2: Reverse Engineer the protocol

- What is this?
- UDP packets flying left and right
- No idea, but connects to port 3671

```
7 3.052785
              172.31.20.160
                                                                      101 Source port: 65303 Destination port: efcp
                                     172.31.14.49
                                                           UDP
 8 3.055379
              172.31.14.49
                                     172.31.20.160
                                                           UDP
                                                                       94 Source port: efcp Destination port: 51440
 9 3.085506
              172.31.14.49
                                     172.31.20.160
                                                           UDP
                                                                      101 Source port: efcp Destination port: 51440
10 3.087475
              172.31.20.160
                                     172.31.14.49
                                                                       90 Source port: 65303 Destination port: efcp
                                                           UDP
11 3.087640
              172.31.20.160
                                    172.31.14.49
                                                                       90 Source port: 65303 Destination port: efcp
                                                           UDP
                                                                      101 Source port: efcp Destination port: 51440
12 3.103252
              172.31.14.49
                                     172.31.20.160
                                                           UDP
13 3.104639
              172.31.20.160
                                     172.31.14.49
                                                                       90 Source port: 65303 Destination port: efcp
                                                           UDP
14 3.281075
              172.31.14.49
                                     172.31.20.160
                                                                       94 Source port: efcp Destination port: 51440
                                                           UDP
15 3.311493
              172.31.14.49
                                     172.31.20.160
                                                           UDP
                                                                      101 Source port: efcp Destination port: 51440
                                                                       90 Source port: 65303 Destination port: efcp
16 3.316043
              172.31.20.160
                                     172.31.14.49
                                                           UDP
17 3.330474
              172.31.14.49
                                     172.31.20.160
                                                                      102 Source port: efcp Destination port: 51440
                                                           UDP
18 3.334169
              172.31.20.160
                                     172.31.14.49
                                                                       90 Source port: 65303 Destination port: efcp
                                                           UDP
19 4.337301
              172.31.20.160
                                     224.0.0.1
                                                                      118 Source port: 52000 Destination port: 52000
                                                           UDP
20 4.337438
              172.31.20.160
                                     224.0.0.1
                                                                      118 Source port: 52000 Destination port: 52000
                                                           UDP
```

Step 2: Reverse Engineer the protocol

 Use advanced machine learning techniques to discover the communication protocol

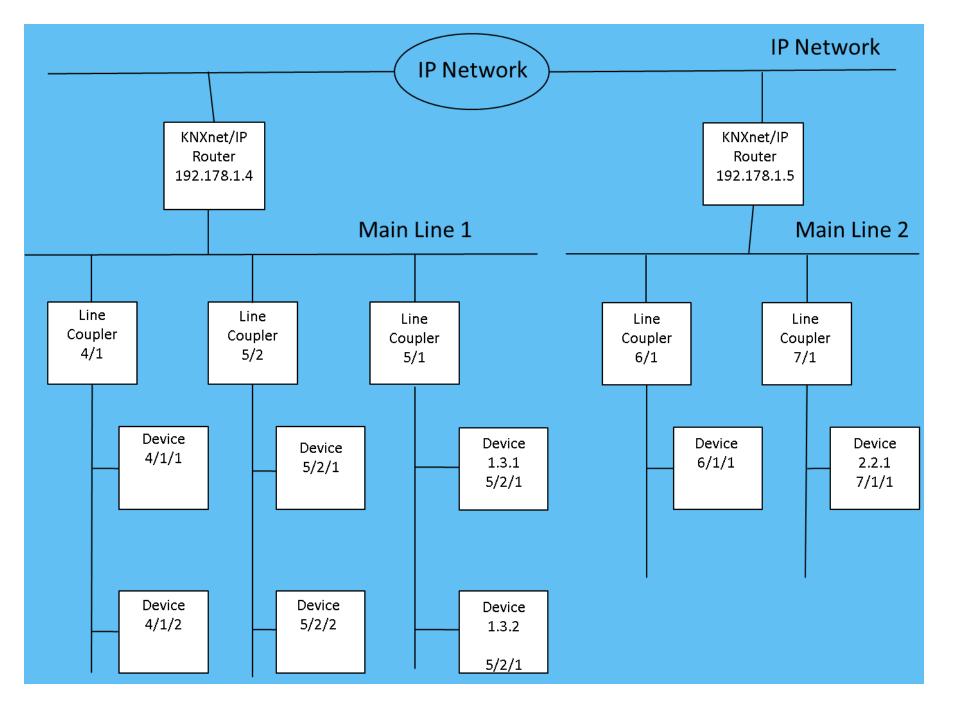

This is the part with frames of the hero reading his Kindle and researching the internets

KNX INTERLUDE

Step 2: Reverse Engineer the protocol

- KNX! And a fancy plugin for wireshark
- So what is KNX?
- According to their webpage, KNX is "the world's only open Standard for the control in both commercial and residential buildings". It goes on by saying "KNX is therefore future proof"
- This communication protocol is KNX/IP, or KNX over IP

KNX/IP frame


06 10 04 20 00 15 04 49 00 00 11 00 bc e0 00 00 08 02 01 00 81

A cEMI frame* to make a lightbulb go

```
/* TUNNELLING REQUEST */
                  /* Header (6 Bytes) */
                  treq[0] = 0x06; /* 06 - Header Length */
                  treq[1] = 0x10; /* 10 - KNXnet version (1.0) */
                  treq[2] = 0x04; /* 04 - hi-byte Service type descriptor (TUNNELLING REQUEST) */
                  treq[3] = 0x20; /* 20 - lo-byte Service type descriptor (TUNNELLING REQUEST) */
                  treg[4] = 0x00; /* 00 - hi-byte total length */
                  treq[5] = 0x15; /* 15 - lo-byte total lengt 21 bytes */
                  /* Connection Header (4 Bytes) */
                  treg[6] = 0x04; /* 04 - Structure length */
                  treq[7] = iChannelID & 0xff; /* given channel id */
                  treq[8] = 0x00; /* sequence counter, zero if you send one tunnelling request only at
                  this session, otherwise count ++ */
                  treg[9] = 0x00; /* 00 - Reserved */
                  /* cEMI-Frame (11 Bytes) */
                  treq[10] = 0x11; /* message code, 11: Data Service transmitting */
                  treq[11] = 0x00; /* add. info length (bytes) */
                  treq[12] = 0xbc; /* control byte */
                  treq[13] = 0xe0; /* DRL byte */
                  treq[14] = 0x00; /* hi-byte source individual address */
                  treq[15] = 0x00; /* lo-byte source (replace throw IP-Gateway) */
                  treq[16] = (destaddr >> 8) & 0xff; /* hi-byte destination address (20: group address)
Address
                  4/0/0: (4*2048) + (0*256) + (0*1) = 8192 = 20 00 */
                  treq[17] = destaddr & 0xff; /* lo-Byte destination */
                  treg[18] = 0x01; /* 01 data byte following */
                  treq[19] = 0x00; /* tpdu */
 Action
                  treq[20] = 0x81; /* 81: switch on, 80: off */
```

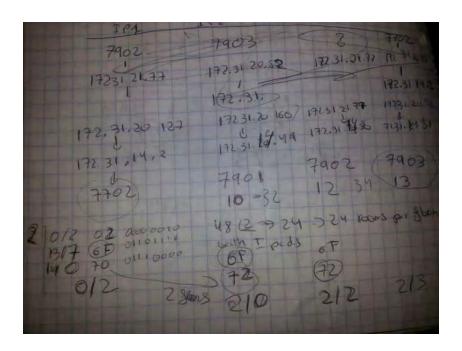
KNX/IP Network

- Addresses are in the format A/B/C
- Every room accessed by an IP address
- Every room has a unique KNX subnet A/B
- The last digit (C) is the appliance address, identical for each room
- If room 7773 is on subnet 1/5 and the TV adress is 30, the you need to send to addres 1/5/30

KNX/IP security

This slide is intentionally left blank

Hero switches off his kindle. He understands the protocol and moves to the next step


INTERLUDE ENDS

Step 3: Get the attack ingredients

- An attacker only needs four elements
- A tool to send the KNX/IP frames
 - Code the protocol or check the internet: eibd
- A library of IP addresses for each KNX/IP router and corresponding room number
 - Change rooms or listen to other rooms
- A library of KNX addresses for each room and for every device in the room
 - Press each button on the iPad app
- A library of actions and action payload for each device
 - Press each button on the iPad app

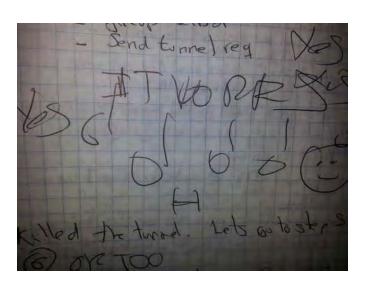
Step 3: Get the attack ingredients

Look for patterns using cutting edge technology

Step 3: Get the attack ingredients

- The KNX/IP addresses of every room were simple to guess. The KNX subnets for the rooms where simple too
- The actions and device address in each room were identical
- The DND lights and make up room light had another address space dedicated to them in each floor

Step 4: Perform the attack


Switching on every TV in the hotel

For each [KNX_room, IP]

For each [KNX_item,TV_action,TV_payload]

KNXtunnel KNX_room/KNX_item TV_action TV_payload IP&

DONE – be happy about it

Step 5: External Attack

- You said "Remotely"
- Attacker must be on the hotel network (Open)
- Several options
 - A "repeater" inside or outside the hotel: Big antenna and a bridge
 - iPad trojan: Use the iPad to connect to the internet periodically

Mitigation and Solutions

- iPad, network and KNX do not provide any security alternatives
- A possible solution is to create a tunnel between iPad and router with mutual authentication
- KNX released recently a new set of specification, but the closed nature of the protocol make it impossible to check it (for me)

Aftermath

- The hotel took the system off-line
- Security researchers, leaders in the automation market and members of the hotel industry need to start conversations to provide guest with reasonable protection standards while enjoying home automation

HARD HACK II

 Guess where it will be located? Hint: The director like the Die Hard series