Check Your Fingerprints:
Cloning the Strong Set

Richard Klafter
Eric Swanson



GPG is Used Everywhere

e Most widely used email encryption package

e Used extensively for software package
verification

e [ots of people use GPG other than privacy
conscious crypto nerds: journalist, lawyers,
software maintainers



Key Exchange

Usually relies on key servers

Retrieved with 32bits, 64bits, or fingerprint
Verity key with fingerprint or web of trust
Mistakes are fatal

Key exchange is hard




State of the Web of Trust

e Method of establishing authenticity of keys
e Most popular decentralized method
e Usage difficulty means it is often not used

The Warning: "no ultimately trusted keys found" means that gpg was not
configured to ultimately trust a specific key. Trust settings are part of
OpenPGPs Web-of-Trust which does not apply here.

- Debian SecureApt Wiki



DEMO - Install Puppet

e Download Puppet and its signature from our mirror
o http://mirror.evil32.com/puppet.tar.gz
o http://mirror.evil32.com/puppet.tar.gz.asc
e Verify signature (because you don’t trust evil32.com :)
o http://docs.puppetlabs.com/guides/
puppetlabs_package verification.htmi


http://downloads.evil32.com/puppet/puppet-3.2.2.tar.gz
http://downloads.evil32.com/puppet/puppet-3.2.2.tar.gz
http://mirror.evil32.com/puppet/puppet-3.2.2.tar.gz.asc
http://mirror.evil32.com/puppet/puppet-3.2.2.tar.gz.asc
http://docs.puppetlabs.com/guides/puppetlabs_package_verification.html
http://docs.puppetlabs.com/guides/puppetlabs_package_verification.html
http://docs.puppetlabs.com/guides/puppetlabs_package_verification.html
http://docs.puppetlabs.com/guides/puppetlabs_package_verification.html

Humans are Broken (Not Encryption)

e Humans make mistakes
e Not good at comparing large strings
-e—SPG does not help protect us from ourselves

eswanson@turing ~$ gpg --keyserver pgp.mit.edu --recv-keys 10000001

gpg:
gpg:
gpg:
gpg:
gpg:

requesting key 10000001 from hkp server pgp.mit.edu
key 10000001: public key "John Doe <john@doe.com>" imported
key 10000001: public key "Jane Doe <jane(@doe.com>" imported
Total number processed: 2

imported: 2 (RSA: 2)



GPG NOT Verifying Received Key

eswanson@turing ~$ gpg --keyserver pgp.mit.edu --recv-keys
80615870F5BAD690333686D0F2AD85AC1E42B367

gpg: requesting key 1E42B367 from hkp server pgp.mit.edu
gpg: key OBADBEEF: public key "Evil32" imported
—gpg+—Fotal number processed: 1

gpg: imported: 1 (RSA: 1)

e GPG does verify what the server sent you
e Key server can tell you to import anything
e Key servers do not use SSL so MITM or DNS break



Installing Docker with apt-key adv

root@gpgevil:~# sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
--recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21EY

Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --
homedir /tmp/tmp.GBHIRGOWXe --no-auto-check-trustdb --trust-model always --
=keyring /etc/apt/trusted.gpg --primary-keyring /etc/apt/trusted.gpg --
keyserver hkp://keyserver.ubuntu.com:80 --recv-keys
36A1D7869245C8950F966E92D8576A8BA88D21E9

gpg: requesting key A88D21E9 from hkp server keyserver.ubuntu.com

gpg: key OBADBEEF: public key "Evil32" imported

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)



How the Tool Works

1. Generates 500 million GPG keys a second
2. Checks each key for a partial fingerprint
collision

e Runs using OpenCL on a modern GPU
Uses simplified regexes to find multiple collisions simultaneously
e Source and more info on our github project: https://evil32.com


https://evil32.com

32bit Key IDs are Ridiculously Broken

e Few seconds to generate a 32bit key id
e Cloned the web of trust (~50,000 keys)
e Took a day on a 4 year old linux box



64bit Key Ids

e Finding a specific key id not practical
e Finding a key id relatively easy
(107 days looking for 100 keys with 20 GPUs)

e Likely easy to find 64bit key ids in a few
years



Vulnerabilities

Network is owned:

e Send arbitrary keys in
response to --recv-keys

e Tamper with http
fingerprints

Network IS secure:

e Exploit 32-bit key
collisions

e Upload arbitrary data to
keyserver



Takeaways

e Three rules of GPG
1. Verify your fingerprints (or use the WoT)

2. Don't trust the keyserver
3. Never use 32-bit key IDs

e GPG Ul is broken (who knew?)



Go to our project page to
get the source code and

see other fun GPG Ul
exploits

https://evil32.com


https://evil32.com
https://evil32.com

