
Instrumenting Point-of-Sale Malware 
A Case Study in Communicating Malware Analysis More Effectively 
Robert Wesley McGrew, Ph.D. 
Assistant Research Professor 
Department of Computer Science and Engineering 
Distributed Analytics & Security Institute (DASI) 
Mississippi State University 
July 13, 2014 !



ABSTRACT !
The purpose of this white paper, and the talk that accompanies it, is to promote the 

adoption of better practices in the publication and demonstration of malicious software 

(malware) analyses. For various reasons, many popular analyses of malware do not 

contain enough information required for a peer to replicate the research and verify 

results. This hurts analysts that wish to continue to work more in-depth on a sample, 

and reduces the value of such analyses to those who would otherwise be able to use 

them to learn reverse engineering and improve themselves personally. This paper and 

talk proposes that we borrow the concept of “executable research” by supplementing our 

written analysis with material designed to illustrate our analysis using the malware 

itself. Taking a step beyond traditional sandboxes to implement bespoke virtual 

environments and scripted instrumentation with commentary can supplement written 

reports in a way that makes the analysis of malware more sound and useful to others.  

As a case-study of this concept, an analysis of the recent high-profile point-of-sale 

malware, JackPOS is presented with enough information to replicate the analysis on the 

provided sample. The command-and-control server is included and Python-based 

harnesses are developed and presented that illustrate points of interest from the 

analysis by instrumenting the execution of the malware itself. 

!



INTRODUCTION !
This paper serves as a companion to a talk/demonstration given by the author on 

improving published malware analyses in general, and resources provided (code and 

configuration) that allow the reader to follow along with, reproduce, verify, and resume 

work from the case study analysis. We will begin with a discussion on the 

reproducibility and verifiability of published malware analyses, then make 

recommendations for improving these traits in future analyses. Finally, a case study 

using a recent and popular point-of-sale malware sample is presented to demonstrate 

how these recommendations can be put to practical use. 

!
REPRODUCIBILITY AND VERIFIABILITY IN MALWARE 
ANALYSIS !
The author, in the course of learning about malicious software (malware) analysis, 

conducting research in malware analysis, and accumulating materials suitable for 

teaching reverse engineering (with a focus on malware), has read many malware 

analyses published by companies, organizations, and individuals. While many 

consumers of such analyses never intend to “get their hands dirty” and verify results or 

use them as a basis for further work, and are perfectly satisfied with taking the word of 

the analyst. This is fine for those focused on indicators of compromise and removal 

instructions, as well as those who only need an “executive summary” of operation. Those 

involved in malware research that are interested in the low-level operation of malware, 

in the pursuit of such things as attribution, documentation of techniques, and 

comparison of samples, are often left with less information than they’d like to begin 

their work. Students learning reverse engineering in the context of malware analysis 

are even poorer served, without documentation of how to reproduce the findings of an 

analysis, an activity that would otherwise be very educational. 



Replicating the results of an experiment as a part of peer review is a cornerstone of the 

scientific method[1]. Many published analyses of malware have critical elements 

missing that prevent the analysis from being as useful as it could be to other analysts: 

Sample information - By far, the element necessary to replicate results that is most 

frequently missing is availability of the malware sample itself. We will discuss the 

reasoning behind this later in this paper, but often, a published analysis references a 

malware sample that is unavailable for other researchers to download. Less frequently, 

the specific identifying hash of the malware sample is not specified, or a body of hashes 

is provided, only one of which (unspecified) is the variant that is the subject of the 

analysis. 

Procedural information - This is in reference to procedures used to analyze the 

malware. While it’s not expected that every step be documented (general procedures are 

well documented for beginners[2]), those specific to the malware itself that might stand 

in the way of an analyst are often not well documented. As an example, procedures used 

to extract packed samples to a state suitable for analysis are often not well-documented. 

Contextual information - Most frequently missing, in this category, is information 

about infection sources and command and control hosts. Often this is related to missing 

sample information in that the very information that could be used to acquire samples 

discussed in analyses is often redacted in screenshots, log files, and other documentation 

of where the malware originated, is hosted, or “phones home”. 

Internal points of reference - While many analyses discuss functionality and 

algorithms internal to the malware, and sometimes a block diagram of the basic 

execution of the sample, information about where those elements are located within the 

sample itself is often omitted. 

Not all analyses are missing all of the above information, and, with effort, some missing 

elements can be reconstructed,  though when this the case, it represents what could be 

made an unnecessary duplication of effort. 



RATIONALE FOR LACK OF REPRODUCIBILITY !
The author acknowledges that the “problems” discussed in the previous section are often 

intentional on the part of those that publish analyses. The absence of specific 

information is not necessarily an indicator of poor quality of analysis or analyst. The 

following are presumed rationale for excluding information that would be necessary for 

reproducibility and verifiability. These points are considerations that must be made 

before publishing more detailed analyses, and therefore represent hurdles to the 

adoption of the author’s proposed improvements to published analyses. 

Target Audience - In many cases, the target audience does not include fellow analysts 

or students. If the analysis is intended to deliver indicators of compromise and removal 

instructions to those who are tasked with defending networks without requiring 

detailed knowledge of malware internals, then the bar for reproducibility is much lower. 

Added Effort - Designing an analysis report in a way that includes information needed 

for reproducibility certainly requires more effort than a report that omits such 

information. This is compounded when detailed notes are not kept during the analysis 

with the future intention of putting together a  more “complete” report. 

Analysis Consumer Safety - Information may be redacted to prevent readers from 

acquiring, running, and self-infecting with malware in an uncontrolled way. Some 

organizations may see this as a liability issue. 

Client Confidentiality - Information may be withheld that is specific to the client of 

the reporting analyst, due to confidentiality agreements. Information may be redacted 

in an over-zealous manner, or the malware sample itself might be withheld due to not 

being able to say with certainty what client data might exist in the sample. The author 

of this work sees this as being the most compelling argument against including 

extended information in an analysis. 

Competitive Advantage - For many companies and organizations, a popular 

published analysis is a public relations boon, showcasing technical capabilities and 



providing a venue for advertising products and services. By publishing an analysis, and 

withholding information that could be used to replicate that analysis, analysts at 

competing organizations are unable to effectively leverage the provided information to 

produce “better” analyses. In the case of malware samples that are not widely available, 

a company with exclusive access to a particular sample has the advantage of being the 

only source of information about that malware. 

While all of the above may be valid rationale under some circumstances, it is worth 

pointing out that a decision to redact or withhold information for competitive advantage 

can almost always be outwardly claimed to be due to any of the other reasons. While the 

author is not aware of any hard evidence that competitive advantage is the rationale 

behind many analyses falling short of reproducibility and verifiability, it has been 

anecdotally observed that independent, individual, and academic analysts’ analyses are, 

on the whole, more likely to contain information supporting reproducibility than those 

published by larger companies (especially those in the antivirus industry). 

!
BORROWING FROM “EXECUTABLE RESEARCH PAPERS” !
In academia, scholarly works are subject to peer review that, when the system of peer 

review works, can allow others to “stand on the shoulders of giants” to perform their 

own work, as well as expose flaws in research when published results are unable to be 

verified by other researchers. In computational science, a field that involves using 

computing and data analysis to solve problems[3], there has been a movement towards 

developing and using a system of “executable research papers”, where research can be 

presented in electronic and interactive form that embody the algorithms, data, and 

analysis of results in a way that the reader can execute, observe, and manipulate[4]. 

While it may not be prudent to create malware analysis reports that are immediately 

executable, it can be argued that providing samples, resources, and instrumentation for 

demonstrating findings alongside an analysis brings the concept of published analysis 



closer to that of an “executable paper”. A system similar to that proposed by the SHARE 

project (as a response to the Executable Paper Grand Challenge) [5], where research is 

presented in the context of a virtual machine containing the software and data required 

to replicate it may have more immediate application to publishing “high information 

content” malware analyses. 

!
RECOMMENDATIONS !
It is proposed that, for a published analysis of malware to be considered easily 

reproducible and verifiable, the following traits may be desirable: 

• Sample Availability - Where the medium used to communicate the analysis 

does not lend itself to safely distributing a live malware sample, the sample 

should be made available to download from a site such as VirusShare[1], which 

has been set up as a central repository for making samples easily accessible by 

researchers. 

• Host Environment - Beyond what is provided by traditional “triage” tools for 

malware analysis sandbox environments, an environment should be provided, 

or documented in enough detail for an analyst to reproduce, that allows for the 

primary functionality of the malware to execute. Operating system and 

targeted software should be documented. 

• Target Data - When malware seeks data to exfiltrate, software to generate 

and simulate that data can be provided to exercise those areas of malicious 

code. 

• Network Environment - Network resources needed to exercise the primary 

functionality of the malware should be provided or documented. For example, 

malware that communicates with a command and control server should be 

accompanied by an implementation of the command and control protocol. 



Developing and providing a command and control server, where one is not 

already widely available, may, in some cases, involve large investment of time. 

In the author’s reverse engineering course, students create command and 

control servers for undocumented samples. A minimal implementation, or, at 

least, as complete documentation of the protocol as needed to demonstrate 

functionality should be provided. 

• Instrumentation - By use of scriptable debugging, such as that provided by 

the Python library WinAppDbg [10], a “harness” can be created that executes 

the malware in a way that is easy to observe, and illustrates the findings of the 

analyst’s static and dynamic analysis. As the analysis process progresses, each 

finding regarding internal data or functionality can be illustrated at a 

programmatic breakpoint in the actual malware code. Essentially, debug 

output for the malware can be created where there originally was none. 

Harness scripts can also be created that execute isolated sections of the 

malware to illustrate the operation of functions deeper in the path of execution 

independently of the rest. 

!
Taken as a whole, the written analysis, combined with the above electronic deliverables, 

can be used to create en environment in which the malware can be observed at a high or 

low level, and manipulated to further that analysis. For those who enjoy and engage in 

malware reverse engineering, it’s a step closer to owning and maintaining the “Malware 

Aquarium” as described in XKCD 350 [6]: 

!!!!!!!!



 
CASE STUDY: JACKPOS POINT-OF-SALE MALWARE !
The purpose of this section and its corresponding demo that makes up a good portion of 

the accompanying talk is to illustrate how an analysis can be published that discusses 

the operation of malware at a high level, while also providing the detail needed for 

analysts to run the malware in a safe environment and replicate its results. 

!
Sample Selection 
!
The JackPOS sample was chosen largely by virtue of being the most current piece of 

malware being analyzed by the author of this work at the time this paper was created. 

During the time the author was performing his analysis and creating this work, other 

analyses and writings on this malware have been published. Notably, Josh Grunzweig of 

TrustWave Spiderlabs has published a blog post discussing a brief analysis of JackPOS 

[7], and unixfreakjp of the Malware Must Die collective has discussed the sale and 

distribution of this malware[8]. It is the author’s opinion that Grunzweig’s analysis is 

quite good, and contains much of the information needed to reproduce the analysis, even 



if all of the recommended elements of a reproducible and verifiable analysis are not 

present. 

A very special thanks from this author goes to Xylit0l of Malware Intelligence for 

running the CyberCrime Tracker, which allowed the author to locate a collection of 

JackPOS samples and even capture a copy of the command and control server. 

The general consensus among all of the current analyses of JackPOS is that it is not a 

terribly impressive piece of malware. There are a few reasons, though, to justify it as a 

good choice for a case study of this kind: 

• Point-of-Sale malware is a currently growing concern, so illustrating an 

example of it makes for a compelling demo. 

• A copy of the malware operator’s command and control source code has been 

acquired (and distributed along with this analysis), which gives us the 

opportunity to watch execution from both the client and server’s perspective. 

We can demonstrate a full environment for operating, and being infected by, 

the JackPOS malware. 

• The sample’s use of C++ strings and STL constructs makes casual static 

analysis of the disassembly more challenging than it would if it were written in 

more straightforward C. The superficial use of objects created at runtime 

confuses stock IDA Pro’s ability to cross reference usage of data. This makes 

the test harnesses provided more useful in documenting the state of important 

memory locations at points of interest at runtime. 

• The functionality for searching other running processes can be instrumented to 

run independently of the remainder of the malware. 

• It’s relatively easy to patch in a way that runs in the harness without its 

normal installation and persistence setup. 

!



What’s Provided 
• The sample itself is available in VirusShare.com archive, to avoid providing live 

malware with conference materials. 

• MD5 - aa9686c3161242ba61b779aa325e9d24 

• SHA1 - 9fa9364add245ce873552aced7b4a757dceceb9e 

• PHP source code for the command and control server 

• A database schema created to work with the above command and control 

• jackpos_harness.py - A Python harness for instrumenting the execution of 

the JackPOS sample. Used to patch JackPOS at runtime to connect to an 

arbitrary command and control server, execute it in a way that’s friendlier to 

analysts than its usual installed and persistence state, and illustrate the 

internal operation of JackPOS as debug output as it executes.  

• search_proc_harness.py - Another harness script that bypasses the 

majority of JackPOS functionality in order to only call the process memory 

searching functionality on a PID given at the command-line. 

• gen_track_data.py - A script that acts as a (generated) data source for JackPOS 

to gather from and exfiltrate. Essentially, this is a stand-in for the point of sale 

terminal software. 

With a combination of the analysis and the resources provided, it is possible to set up an 

environment that executes and demonstrates the entirety of the “desired” path of 

execution and data (from card “swipe” to showing up in the command and control) of 

JackPOS. This virtual environment will be presented and discussed as part of the 

accompanying talk to this paper. 

!!!

http://VirusShare.com


Harness Design 
!
The two Python harnesses provided are both based on a very simple template that is 

intended to be easily applied to the analysis of other samples. The WinAppDbg[10] 

library is used to implement scriptable debugging of the target malware sample. While 

the operation of these harnesses can be flexible, most features are implemented by 

functions that trigger upon hitting breakpoints set in code. A list of breakpoints with 

associated callbacks exists in the code: 

!
Callbacks receive an event, then typically extract process, thread, and context 

information from the break event. The purpose of most of the callbacks is to illustrate 

points of interest in the malware by displaying the status of important areas of memory, 

indicating that execution has reached a certain point, or patching the target malware in 

order to reach desired code. The following code that patches the command and control 

server string at the appropriate point in execution demonstrates how the callbacks 

work: 

!



For debug output, several wrapper functions around WinAppDbg’s color output 

functions are provided to color-code output in order to make identifying different types 

of output easier, and apply timestamps to each line. For the case study analysis the 

following conventions are used for color-coded output: 

!

!
!
!
!
!

Output Function	 Color Output Type

print_script(str) White Information from the harness itself

print_modification(str) Red Modifications made at runtime

print_hook(str) Yellow Hooked API functions

print_network(str) Green Network communication

print_process(str) Cyan Information regarding malware querying processes

print_internal(str) Magenta Internal operation/data in the malware



ANALYSIS !
Overview 
JackPOS is a simple implementation of point-of-sale malware. The specific sample 

studied in this analysis matches the SHA1 sum: 

 9fa9364add245ce873552aced7b4a757dceceb9e 

The malware supports installing itself, setting up registry persistence, and executing a 

“watchdog” process that will re-spawn the malware if it is killed or crashes. The main 

body of the malware’s functionality involves a loop in which the malware scans 

processes on the system, and uses a pair of search functions on regions of target process 

memory to look for “dumps” of credit card magnetic stripe track data. The malware then 

sends the track data to the command and control server, and at that time has the ability 

to receive commands from the server to update itself, upload and execute another 

program, or kill its own process. 

The focus of this analysis is on what is considered to be primary functionality: searching 

for credit card track data and communications with the command and control.  

Command and Control 
The command and control server for JackPOS, captured from a live site, takes the form 

of a PHP web application that uses the Yii framework[11]. The PHP code has been 

included with the distributable material for this talk as jackpos_cnc.tar.gz. Some 

configuration files have been modified from the captured version in order to run the 

server in the analysis environment. For the analysis environment, a fresh Linux Mint 

16 was created to act as the command and control server, with tasksel installed in 

order to get a base lamp-server setup. In addition to the base LAMP stack, three other 

packages should be apt-get install’d: 

• php5-imagick!
• php5-gd!



• php5-json (without which, frustratingly, select portions of the interface are simply blank with no error) !
Regrettably, the captured command-and-control server did not include a schema for the 

database, and unlike other MVC frameworks like Django, Yii projects do not support 

creating a database schema from the data model definitions. A schema has been created 

through a combined process of addressing errors regarding missing tables and columns 

as they arise, and determining needs by inspecting the data model source code in the 

protected/models directory. This crafted schema has been included in the file, 

jackposc2_schema.sql, which can be imported into a freshly-created database named 

“jackposc2” in order to provide the command and control with the database it’s 

expecting. The data model and schema creation process illustrates the primary focus of 

this malware and its command and control, with tables that include: 

• bots - Identified by MAC and IP addresses 

• cards - With related “dumps” and “tracks” tables 

• commands - To queue commands to be sent to hosts when they check in 

In jackposc2_schema.sql, there is also a single user record installed, so that the 

analyst can log into the interface, navigate around, and see when the malware checks in 

and submits data. To log in, use email address “badguy@localhost” with the password 

“jackpos”. 

Once set up successfully, the command and control server should be up and running for 

the analyst to log into and see the following interface: 

!!!!!!!
!



The “Dumps”, “Bots”, and “Settings” pages should be operational, though there is not yet 

any data from infected clients to view or interact with. We’ll revisit this interface after 

we have set up the sample to communicate with it. 

First Steps with the JackPOS Client Sample 
The sample is packed using UPX, as can be noted by examining it with PEID or RDG 

Packer Detector. This is fortunate, as it allows us to avoid a lengthy discussion of 

unpacking and move on to the analysis relatively quickly. The sample was unpacked 

using the command line UPX packer with the “-d” option. 

While the sample was apparently successfully unpacked, judging from the immediate 

presence of program-unique strings and code that uses them in static analysis, there 

was a problem with the unpacking process. Attempts to run the unpacked program 

caused it to immediately crash. Immunity Debugger reports the crash as a result of an 

“Access violation when reading [00438818]”. According to IDA Pro, this would be the 

address of a stack cookie seed value, but only if the executable loaded at it’s “preferred” 

base address of 0x00400000. Due to ASLR, it’s not loaded at that address, and the 

relocation information needed to fix this reference (and potentially others) is missing. 



A fix for this is, or at least one that is suitable for malware analysis, is simple: disable 

relocation for this binary. This has the nice side effect of fixing everything else in 

memory, making it easier for our instrumentation scripts to work without having to 

calculate new addresses for each execution. Patching the executable to disable relocation 

is straightforward. In the PE header for the executable, there is a flag in 

IMAGE_NT_HEADERS > IMAGE_OPTIONAL_HEADER called 

IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE. Viewed in PE View, we can see that in 

this sample, that bit is set: 

!
This bit can be un-set in a hex editor at the offset 0x156 into the executable file. 

Installation and Persistence 
WinMain in this sample begins at 0x00408F90, and branches early, at 0x00408FEA at a 

test following a function (0x00408AB0, IDB: check_installed) that checks to see if 

the malware is currently installed. Prior to this, a function (0x00401AF0, IDB: 

setup_strings) is called to set up string objects for the rest of execution. That these 

objects are all created at runtime with the actual C-style strings from the data segment 

is part of what complicates static analysis.  

The strings form three groups forming what passes for the configuration of this 

malware: 

• A command and control server string (“priv8darkshop.com” in this sample) 

• A list of executable file names that will be used as the installed sample’s name 

(Starting with “jusched.exe”) 

http://priv8darkshop.com


• It has been observed at runtime that if a file of its chosen name already 

exists at the install location, the next filename on the list is chosen 

• A list of process names that will not be searched for track data later on in the 

main loop. 

If the install check fails, the main loop does not execute. Instead, the code responsible 

for installation and persistence begins at the basic block located at 0x00408FF0. The 

logged-in user’s AppData\Roaming folder is located, a directory named “Java SE 

Platform Updater” is created, and the malware is copied to that location. Registry 

persistence is established in: 

 HKCU\Software\Microsoft\Windows\CurrentVersion\Run\!

Once installed, the new copy is run with the original as a command-line argument. 

When the install check passes on the new run, the original is deleted (after a brief 

Sleep() call in order to give it time to exit) at 0x0040921B. 

For our purposes, it would be much more convenient to simply run the malware from 

our local working directory and have it bypass most of the installation, persistence, and 

checking. For that reason, some of the earliest actions taken in our 

jackpos_harness.py are: 

• patch_cnc at 0x00401B38 - changing the command and control server to one 

under our control 

• patch_install_check at 0x00408FE8 - forces execution of the main loop, rather 

than the installation code, even if the installation check fails 

• shell_execute_blocker at 0x0040B796 - prevents call to ShellExecute that would 

run the watchdog process. Also serves to prevent the command and control 

server from executing anything on the infected client later on. 

!!



Instrumenting Command and Control Communication 
A function at 0x00403710 (IDB: cnc_checkin) executes once before entering the main 

loop, and once on each iteration of the main loop. The purpose of this function is to: 

• (in 0x00403F10, IDB: post_echo) - Test for the presence of the command and 

control server by retrieving the path /post/echo from its web server. It can be 

seen in the PHP source of the command and control (in protected/controllers/

PostController.php) that it responds “up” to this request. This function tests for 

that response, and only if it passes this (very simple) check, does it proceed to 

communicate further with the command and control. Presumably this is to 

keep the sample from “giving away” too much in a sandbox environment. 

• (beginning at the basic block at 0x00403859) - Crafts POST data for checking 

into the command and control is crafted from: 

• Base64 Encoded (0x00401000, IDB: base_64_encode) track data retrieved 

from processes, if any 

• MAC address information (0x0040CD10, IDB: mac_addr) used to uniquely 

identify an individual bot within the command and control. 

• (in 0x0040CD10, IDB: cnc_post_data) POST data is sent to the command and 

control server, and if there is a command in the command and control queue for 

that particular bot, the malware receives the command as a response. 

We can observe this in action with the following jackpos_harness.py functions: 

• cnc_online at 0x0040320A - Observes the /post/echo check 

• cnc_online_end at 0x00403321 - Displays the results of the check 

• cnc_send at 0x004035BC - Displays the data (MAC, and track data, if any) 

being sent to the command and control 



• cnc_recv at 0x00403627 - Displays data being sent back to the malware from 

the command and control server (If anything, presumably a command to be 

parsed and followed). 

Identifying Commands 
The focus of this analysis is on the theft of credit card track information from infected 

hosts, but in our jackpos_harness.py we at least point out where the three commands 

that the command and control server can issue begin to be parsed. Much of this 

processing in the malware takes place in the WinMain function. 

• kill (harness: process_kill) - removes the malware’s persistence and kills the 

process. 

• update (harness: process_update) - causes the malware replaces the current 

installation of JackPOS with the latest version (as returned from the path /

post/download). Updated malware is kept on the command and control server 

in /clients/. 

• exec <url> (harness: process_exec) - causes the malware to download and run 

from a url (rather than replacing the current malware as in the “update” 

command). URLs provided by the “official” command and control server involve 

files in the /exec/ directory. 

Reading Memory from Processes 
In order to effectively steal credit cards from many different point of sale systems, 

without being familiar with the internals of any specific one, and supporting a wide 

variety of different software, the technique JackPOS adopts is one of scanning memory 

for credit card track data. In the function at 0x0040A9D0 (IDB: get_processes), the list 

of available processes is walked, and a list of processes to be scanned is built, avoiding 

64-bit processes, and those matching names from the list built in the configuration 

string setup (mostly system processes). 



Once the list of processes is built, for each process the function at 0x00407CC0 (IDB: 

search_process_memory) is called, which iterates through each region of memory for a 

process that the process is allowed to read. Each memory region is then passed through 

two functions that search for credit card data.  

jackpos_harness.py identifies each call to search_process_memory with the 

search_process callback. A separate harness, search_proc_harness.py, can be used to 

scan arbitrary process ID’s from the command line without invoking the rest of the 

malware. This allows for easily testing the process reading and track data matching 

functionality against our data generation scripts, without having to wait for the 

malware to scan back around to the desired PID. 

Matching Credit Card Track Data 
Functions at 0x00407E30 (IDB: look_for_track1_data) and 004081F0 (IDB: 

look_for_track2_data) seek out credit card magnetic stripe data in regions of memory, 

given starting and ending addresses. The magnetic stripe data on the back of physical 

credit cards is encoded in a standard known as ISO/IEC 7813[12,13]. We can use this 

information to inform our analysis of these two regular-expression-like functions, which 

would otherwise be tedious without prior knowledge of the format. Code is provided in 

gen_track_data.py to generate “fake” track data and hold it in memory for JackPOS to 

find and submit back to the command and control server. With this code we can 

demonstrate how to successfully navigate these two functions. 

Analysis Wrap-Up 
Combined, track data generation and instrumentation of JackPOS allows us to watch 

the execution of this malware in a visual way, which will be demonstrated during the 

talk. The following screenshots illustrates track data being found and submitted 

successfully to the command and control server: 

!!!



!!!!!!!!!!!!



!!
CONCLUSIONS !
By addressing the lack of reproducibility and verifiability in published malware 

analyses, we have the potential to more effectively illustrate the inner workings of 

malware to lay audiences, fellow malware researchers, and students of the field alike. 

While factors exist that might dissuade an organization or individual researcher from 

publishing a reproducible analysis, the population of malware analysts and other 

information security professionals that consume analyses should make it known that 

they expect and appreciate more “complete” analyses. Those that publish analyses 

should be encouraged to become more accountable to peer review, and analyses that 



meet expectations of reproducibility and verifiability should be recommended by 

industry professionals over those that do not. 

Virtualization of resources needed to give malware the environment and data that it 

“wants” in order to carry out its most interesting code path, implementation of network 

services needed (such as command-and-control services), and programmatic 

instrumentation of the malicious software itself, all combine to illustrate the operation 

of malware samples in a way that is more instructive and interactive. Analysts that 

wish to take published analyses further can use reproducible analyses as a basis to work 

from, rather than starting “from scratch”. Future work in this area should explore the 

potential for implementing cloud-based services for publishing instrumented analyses in 

a way that allows an another analyst to observer and work with malware samples in a 

more immediate way. 

!
BIBLIOGRAPHY !
1. Stodden, Victoria C., “The Scientific Method in Practice: Reproducibility in the 

Computational Sciences”, MIT Sloan School of Management Working Papers, 2010, 

http://academiccommons.columbia.edu/item/ac:140117 

2. Sikorsky, Michael and Honig, Andrew, Practical Malware Analysis, No Starch 

Press, 2013 

3. Journal of Computational Science, http://www.journals.elsevier.com/journal-of-

computational-science/ 

4. Executable Paper Grand Challenge, http://www.executablepapers.com/about-

challenge.html 

5. Pieter Van Gorp, Steffen Mazanek, “SHARE: a web portal for creating and sharing 

executable research papers”, Procedia Computer Science, Volume 4, 2011, Pages 

589-597, ISSN 1877-0509, http://dx.doi.org/10.1016/j.procs.2011.04.062. 

http://academiccommons.columbia.edu/item/ac:140117
http://www.journals.elsevier.com/journal-of-computational-science/
http://www.executablepapers.com/about-challenge.html
http://dx.doi.org/10.1016/j.procs.2011.04.062


6. Munroe, Randall, “Network”, XKCD 350, http://xkcd.com/350/. 

7. Grunzweig, Josh, Trustwave SpiderLabs, “JackPOS - The House Always Wins”, 

February 11, 2014, http://blog.spiderlabs.com/2014/02/jackpos-the-house-always-

wins.html  

8. unixfreakjp, Malware Must Die!, “Cyber Intelligence: The JackPOS Behind the 

Screen”, February 13, 2014, http://blog.malwaremustdie.org/2014/02/cyber-

intelligence-jackpos-behind-screen.html 

9. @xylit0l, xylitol@malwareint.com, “CyberCrime Tracker”, http://cybercrime-

tracker.net 

10. Vilas, Mario, WinAppDbg, http://winappdbg.sourceforge.net/ 

11. Yii Framework, http://www.yiiframework.com/ 

12. Wikipedia, “ISO/IEC 7813”, http://en.wikipedia.org/wiki/ISO/IEC_7813 

13. Padilla, L., “Magnetic Stripe Examples: Standard Cards”, http://www.gae.ucm.es/

~padilla/extrawork/magexam1.html 

!

http://blog.spiderlabs.com/2014/02/jackpos-the-house-always-wins.html
http://blog.malwaremustdie.org/2014/02/cyber-intelligence-jackpos-behind-screen.html
mailto:xylitol@malwareint.com
http://winappdbg.sourceforge.net/
http://www.yiiframework.com/
http://en.wikipedia.org/wiki/ISO/IEC_7813
http://www.gae.ucm.es/~padilla/extrawork/magexam1.html

