
Wesley McGrew
Assistant Research Professor

Mississippi State University
Department of Computer Science & Engineering

Distributed Analytics and Security Institute

Instrumenting Point-of-Sale
Malware

A Case Study in Communicating Malware Analysis More Effectively

Introduction
• The pragmatic and unapologetic offensive security guy

• Breaking things

• Reversing things

• Mississippi State University - NSA CAE Cyber Ops

• Enjoying my fourth year speaking at DEF CON

The Plan
• In general:

• Adopt better practices in describing and demonstrating
malware capabilities

• Proposal to supplement written analyses with illustration
that uses the malware itself

• What we’ll spend a good chunk of today’s session doing:

• Showing off some cool instrumented POS malware

• Talk about how you can do the same

Scientific Method  
(the really important bits)

• Reproducibility

• Reasons:

• Verifying results

• Starting new analysis where old analysis left off

• Education of new reverse engineering specialists

• IOC consumers vs. fellow analysts as an audience

What’s often missing?
• Sample info

• Hashes

• Availability

• Procedure

• Subverting malware-
specific
countermeasures

• Context

• Redacted info on
compromised hosts
and C2 hosts

• Internal points of
reference

• Addresses of
functionality/data being
discussed

Devil’s Advocate:
Why it’s not there…

• Fellow analysts and students are not the target audience of many published
analyses

• We’re left to “pick” through for technically useful info

• Added effort - It’s a lot of work to get your internal notes and tools fit for outside
consumption

• Analysis-consumer safety - preventing the reader for inadvertently infecting

• Client confidentiality - Compelling. May be client-specific data in targeted malware

• Competitive advantage - public relations, advertising services, showcase of
technical ability

• Perhaps not in our best interest to allow someone to further it, do it better, or
worse: prove it wrong.

What’s Being Done
Elsewhere?

• Reproducibility and verifiability are a big deal in any academic/scientific
endeavor

• Peer review is supposed to act as the filter here

• (Though maybe we aren’t as rigorous as we ought to be with it in
computer science/engineering)

• Software, environment, data, documented to the point that someone can
recreate the experiment

• Executable/interactive research paper

• Embedded algorithms and data,

• (Doesn’t that sound a bit scary re: Malware? :))

Recommendations
• Beyond sandbox output…

• Sample availability (!!!!!!!!!)

• virusshare.com is the best positive example of the right direction here

• Host environment documentation

• Target data - give it something to exfiltrate

• Network environment - give it what it wants to talk to

• Instrumentation - programmatic, running commentary

• Scriptable debugging (winappdbg!)

• Isolate functionality, document points of interest, put it all into a big picture

http://virusshare.com

Case Study:
JackPOS

Acknowledgements
• Samples - @xylit0l - http://cybercrime-tracker.net

• Prior-to-now-but-post-this-work analyses

• http://blog.spiderlabs.com/2014/02/jackpos-the-
house-always-wins.html

• http://blog.malwaremustdie.org/2014/02/cyber-
intelligence-jackpos-behind-screen.html

• Please check the white paper citations for tools,
executable paper prior work, etc.

(to make sure I get these in before we geek-out on the demo)

http://blog.spiderlabs.com/2014/02/jackpos-the-house-always-wins.html
http://blog.malwaremustdie.org/2014/02/cyber-intelligence-jackpos-behind-screen.html

Why JackPOS?
• Current concern surrounding POS malware

• C2 availability - Ability to demonstrate a complete
environment

• From card-swipe to command-and-control

• C++ strings, STL - runtime objects make static analysis with
IDA Pro a bit more awkward

• Good use case for harnesses

• Independent memory-search functionality

Harness Design
• WinAppDbg - Python scriptable debugging

• Really fun library - Well-documented, lots of
examples, easy to use

• Callbacks for breakpoints

JackPOS
• Example sample - SHA1 
9fa9364add245ce873552aced7b4a757dceceb9e

• Available on virusshare (and mcgrewsecurity.com)

• This is the only part not on the DEF CON DVD.

• Command and Control

• PHP, Yii Framework

Command and Control

• Data model - bots, cards, commands, dumps,
ranges, tracks, users

Back to the sample
• UPX (thankfully not an unpacking talk/tutorial)

• Unpacked version crashes due the stack cookie seed
address not relocating

• Easy fix: disable ASLR (also makes our analysis
easier), unset:

• IMAGE_NT_HEADERS >
IMAGE_OPTIONAL_HEADER >
IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE

Setup
• String setup - c2, executable filenames, 

process names for memory search

• Installation (copying self)/persistence (registry)

• Harness patches -

• Command and control

• Installation check

• Prevents watchdog process  
(and anything else from ShellExecute’ing)

Communication
• Command and Control Check-in

• Checks C2 for http://[c2]/post_echo

• (PostController.php responds “up”)

• Prevents simple sandbox from getting much

• If there’s track data, base64 it and send it

• Harness configured to display data sent

• Check command queue

• Hosts uniquely identify by MAC

Commands
• Credit card track theft happens without having to be

commanded to do so

• Remainder of command set is simple:

• kill

• update - (replace current install with latest from  
/post/download)

• exec <url>

Scraping Memory
• Get a list of functions

• No 64-bit process

• No processes matching internal table 
(system, etc)

• Iterate and search for card data using two  
regular-expression-esque functions

• ISO/IEC 7813 (we can generate and instrument this)

• Harness identifies search process

• Another harness can be used to instrument  
the code to scan arbitrary PIDs

Demo
• Sample MD5 - aa9686c3161242ba61b779aa325e9d24

• Harnesses

• jackpos_harness.py - Instruments all operation

• search_proc_harness.py - Skips to and illustrates track-data
capture

• Track data generator - Generate and hold card swipes in memory

• PHP source for (actual) C2

• (recreated DB schema (uh it works))

Wrapping up
• Addressing reproducibility/verifiability, potential benefits

• Effective illustration for lay audiences, students

• Base to work from (not “from scratch”) for other analysts

• Illustration using the resources malware “wants”, vs.
generic sandbox

• Potential for publishing instrumented analysis in virtual/
cloud environments for others to work with more
immediately

Contact Info
!

wesley@mcgrewsecurity.com
@McGrewSecurity

